Question 5.2: Find and sketch the trajectory of the particle in Ex. 5.2, i...

Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at the origin with velocity

(a) v (0)=(E / B) \hat{ y } ,

(b) v (0)=(E / 2 B) \hat{ y } ,

(c) v (0)=(E / B)(\hat{ y }+\hat{ z }) .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The general solution is (Eq. 5.6):

\left.\begin{array}{l}y(t)=C_{1} \cos \omega t+C_{2} \sin \omega t+(E / B) t+C_{3} \\z(t)=C_{2} \cos \omega t-C_{1} \sin \omega t+C_{4}\end{array}\right\}                                  (5.6)

y(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)+\frac{E}{B} t+C_{3} ; \quad z(t)=C_{2} \cos (\omega t)-C_{1} \sin (\omega t)+C_{4} .

\text { (a) } y(0)=z(0)=0 ; \dot{y}(0)=E / B ; \dot{z}(0)=0 \text {. Use these to determine } C_{1}, C_{2}, C_{3}, \text { and } C_{4} .

y(0)=0 \Rightarrow C_{1}+C_{3}=0 ; \dot{y}(0)=\omega C_{2}+E / B=E / B \Rightarrow C_{2}=0 ; z(0)=0 \Rightarrow C_{2}+C_{4}=0 \Rightarrow C_{4}=0 ;

\dot{z}(0)=0 \Rightarrow C_{1}=0, \text { and hence also } C_{3}=0 . \text { So } y(t)=E t / B ; z(t)=0 . Does this make sense? The magnetic
force is
q( v \times B )=-q(E / B) B \hat{ z }=-q E which exactly cancels the electric force; since there is no net force, the particle moves in a straight line at constant speed. 

(b) Assuming it starts from the origin, so C_{3}=-C_{1}, C_{4}=-C_{2}, \text { we have } \dot{z}(0)=0 \Rightarrow C_{1}=0 \Rightarrow C_{3}=0 ;

\dot{y}(0)=\frac{E}{2 B} \Rightarrow C_{2} \omega+\frac{E}{B}=\frac{E}{2 B} \Rightarrow C_{2}=-\frac{E}{2 \omega B}=-C_{4} ; y(t)=-\frac{E}{2 \omega B} \sin (\omega t)+\frac{E}{B} t ;

z(t)=-\frac{E}{2 \omega B} \cos (\omega t)+\frac{E}{2 \omega B} , or  y(t)=\frac{E}{2 \omega B}[2 \omega t-\sin (\omega t)] ; \quad z(t)=\frac{E}{2 \omega B}[1-\cos (\omega t)] . Let  \beta \equiv E / 2 \omega B .

Then y(t)=\beta[2 \omega t-\sin (\omega t)] ; \quad z(t)=\beta[1-\cos (\omega t)] ;(y-2 \beta \omega t)=-\beta \sin (\omega t),(z-\beta)=-\beta \cos (\omega t) \Rightarrow (y-2 \beta \omega t)^{2}+(z-\beta)^{2}=\beta^{2} . This is a circle of radius  \beta whose center moves to the right at constant speed:

y_{0}=2 \beta \omega t ; \quad z_{0}=\beta .

\text { (c) } \dot{z}(0)=\dot{y}(0)=\frac{E}{B} \Rightarrow-C_{1} \omega=\frac{E}{B} \Rightarrow C_{1}=-C_{3}=-\frac{E}{\omega B} ; C_{2} \omega+\frac{E}{B}=\frac{E}{B} \Rightarrow C_{2}=C_{4}=0 .

y(t)=-\frac{E}{\omega B} \cos (\omega t)+\frac{E}{B} t+\frac{E}{\omega B} ; z(t)=\frac{E}{\omega B} \sin (\omega t) \cdot \quad y(t)=\frac{E}{\omega B}[1+\omega t-\cos (\omega t)] ; z(t)=\frac{E}{\omega B} \sin (\omega t) .

\text { Let } \beta \equiv E / \omega B \text {; then }[y-\beta(1+\omega t)]=-\beta \cos (\omega t), z=\beta \sin (\omega t) ;[y-\beta(1+\omega t)]^{2}+z^{2}=\beta^{2} \text {. This is a circle } of radius \beta whose center is at   y_{0}=\beta(1+\omega t), z_{0}=0 .

5.2

Related Answered Questions