Question 5.11: Find the magnetic field at point P on the axis of a tightly ...

Find the magnetic field at point P on the axis of a tightly wound solenoid (helical coil) consisting of n turns per unit length wrapped around a cylindrical tube of radius a and carrying current I (Fig. 5.25). Express your answer in terms of θ1 and θ2 \theta_{1} \text { and } \theta_{2} (it’s easiest that way). Consider the turns to be essentially circular, and use the result of Ex. 5.6. What is the field on the axis of an infinite solenoid (infinite in both directions)?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use Eq. 5.41 for a ring of width dz, with nI dz:

B(z)=μ0I4π(cosθ2)2πR=μ0I2R2(R2+z2)3/2B(z)=\frac{\mu_{0} I}{4 \pi}\left(\frac{\cos \theta}{ᴫ^{2}}\right) 2 \pi R=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}                          (5.41)

B=μ0nI2a2(a2+z2)3/2dz. But z=acotθB=\frac{\mu_{0} n I}{2} \int \frac{a^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}} d z . \text { But } z=a \cot \theta ,

so  dz=asin2θdθ, and 1(a2+z2)3/2=sin3θa3d z=-\frac{a}{\sin ^{2} \theta} d \theta, \text { and } \frac{1}{\left(a^{2}+z^{2}\right)^{3 / 2}}=\frac{\sin ^{3} \theta}{a^{3}} .

B=μ0nI2a2sin3θa3sin2θ(adθ)=μ0nI2sinθdθ=μ0nI2cosθθ1θ2=μ0nI2(cosθ2cosθ1)B=\frac{\mu_{0} n I}{2} \int \frac{a^{2} \sin ^{3} \theta}{a^{3} \sin ^{2} \theta}(-a d \theta)=-\frac{\mu_{0} n I}{2} \int \sin \theta d \theta=\left.\frac{\mu_{0} n I}{2} \cos \theta\right|_{\theta_{1}} ^{\theta_{2}}=\frac{\mu_{0} n I}{2}\left(\cos \theta_{2}-\cos \theta_{1}\right) .

For an infinite solenoid, θ2=0,θ1=π, so (cosθ2cosθ1)=1(1)=2, and B=μ0nI\theta_{2}=0, \theta_{1}=\pi, \text { so }\left(\cos \theta_{2}-\cos \theta_{1}\right)=1-(-1)=2, \text { and } B=\mu_{0} n I .

5.11

Related Answered Questions