Illustration 3.4-1 Continued
Compute the entropy generated by the flow of 1 kg/s of steam at 400 bar and 500◦C undergoing a Joule-Thomson expansion to 1 bar.
Illustration 3.4-1 Continued
Compute the entropy generated by the flow of 1 kg/s of steam at 400 bar and 500◦C undergoing a Joule-Thomson expansion to 1 bar.
In Illustration 3.4-1, from the energy balance, we found that
\hat{H}_{1}=\hat{H}\left(T_{1}=500^{\circ} C , P_{1}=400 bar \right)=\hat{H}_{2}=\hat{H}\left(T_{2}=?, P_{2}=1 bar \right)and then by interpolation of the information in the steam tables that T_{2}=214.1^{\circ} C. From the entropy balance on this steady-state system, we have
so that
\dot{S}_{\text {gen }}=\dot{M}_{1}\left(\hat{S}_{2}-\hat{S}_{1}\right)From the steam tables (using interpolation to obtain the entropy of steam at 214.1°C and 1 bar), we have
\hat{S}_{1}=\hat{S}\left(T=500^{\circ} C , P=400 bar \right)=5.4700 \frac{ kJ }{ kg K }and
\hat{S}_{2}=\hat{S}\left(T=214.1^{\circ} C , P=1 \text { bar }\right)=7.8904 \frac{ kJ }{ kg K }Therefore
\dot{S}_{\text {gen }}=\dot{M}_{1}\left(\hat{S}_{2}-\hat{S}_{1}\right)=1 \frac{ kg }{ s } \cdot(7.8904-5.4700) \frac{ kJ }{ kg K }=2.4202 \frac{ kJ }{ Ks }Since \dot{S}_{\text {gen }}>0, the Joule-Thomson expansion is also an irreversible process.