In Fig. 23-15, calculate the attenuation, in decibels, at the following frequencies: (a) 0 Hz; (b) 1.592 kHz; (c) 15.92 kHz. (Assume that V_{in} = 10 V_{p-p} at all frequencies.)
In Fig. 23-15, calculate the attenuation, in decibels, at the following frequencies: (a) 0 Hz; (b) 1.592 kHz; (c) 15.92 kHz. (Assume that V_{in} = 10 V_{p-p} at all frequencies.)
a. At 0 Hz, V_{out} = V_{in} = 10 V{p-p} , since the capacitor C appears as an open. Therefore,
N_{dB}=20 \log \frac{V_{out}}{V_{in}}=20 \log \frac{10 V_{p-p}}{10 V_{p-p}}
=20 \log 1
= 20 \times 0
= 0 dB
b. Since 1.592 kHz is the cutoff frequency f_c, V_{out} will be 0.707 \times V_{in} or 7.07 V_{p-p} . Therefore
N_{dB}=20 \log \frac{V_{out}}{V_{in}}=20 \log \frac{7.07 V_{p-p}}{10 V_{p-p}}
= 20 \log 0.707
= 20 \times (-0.15)
=-3 dB
c. To calculate N_{dB} at 15.92 kHz, X_C and Z_T must first be determined
X_C=\frac{1}{2\pi fC}
=\frac{1}{2\times \pi \times 1.592 kHz \times 0.01 \mu F}
=1 k\Omega
Z_T=\sqrt{R^2+X^2_C}
=\sqrt{10^2 k\Omega +1^2 k\Omega }
= 10.05 k\Omega
Next,
N_{dB}=20 \log \frac{X_C}{Z_T}=20 \log \frac{1 k\Omega}{ 10.05 k\Omega}
= 20 \log 0.0995
= 20(-1)
= -20 dB