Question 5.56: Prove the following uniqueness theorem: If the current densi...

Prove the following uniqueness theorem: If the current density J is specified throughout a volume ν, and either the potential A or the magnetic field B is specified on the surface S bounding ν , then the magnetic field itself is uniquely determined throughout ν . [Hint: First use the divergence theorem to show that

\int\{(\nabla \times U ) \cdot(\nabla \times V )- U \cdot[\nabla \times(\nabla \times V )]\} d \tau=\oint[ U \times(\nabla \times V )] \cdot d a ,

for arbitrary vector functions U and V.]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Apply the divergence theorem to the function [× (∇ × V)], noting (from the product rule) that

\nabla \cdot[ U \times( \nabla \times V )]=( \nabla \times V ) \cdot( \nabla \times U )- U \cdot[ \nabla \times( \nabla \times V )] :

\int \nabla \cdot[ U \times( \nabla \times V )] d \tau=\int\{( \nabla \times V ) \cdot( \nabla \times U )- U \cdot[ \nabla \times( \nabla \times V )]\} d \tau=\oint[ U \times( \nabla \times V )] \cdot d a .

As always, suppose we have two solutions, B _{1}\left(\text { and } A _{1}\right) \text { and } B _{2}\left(\text { and } A _{2}\right) \text {. Define } B _{3} \equiv B _{2}- B _{1} (and A _{3} \equiv A _{2}- A _{1} ), so that \nabla \times A _{3}= B _{3} \text { and } \nabla \times B _{3}= \nabla \times B _{1}-\nabla \times B _{2}=\mu_{0} J -\mu_{0} J = 0 . \text { Set } U = V = A _{3} in the above identity:

\int\left\{\left( \nabla \times A _{3}\right) \cdot\left( \nabla \times A _{3}\right)- A _{3} \cdot\left[ \nabla \times\left( \nabla \times A _{3}\right)\right]\right\} d \tau=\int\left\{\left( B _{3}\right) \cdot\left( B _{3}\right)- A _{3} \cdot\left[ \nabla \times B _{3}\right]\right\} d \tau=\int\left(B_{3}\right)^{2} d \tau

 

=\oint\left[ A _{3} \times\left( \nabla \times A _{3}\right)\right] \cdot d a =\oint\left( A _{3} \times B _{3}\right) \cdot d a . But either A is specified (in which case A _{3}= 0 , or else B is

specified (in which case B _{3}= 0 ), at the surface. In either case \oint\left( A _{3} \times B _{3}\right) \cdot d a =0 . \text { So } \int\left(B_{3}\right)^{2} d \tau=0 , and hence  B _{1}= B _{2} . qed

Related Answered Questions