Question 3.4-6: Showing That the Change in State Variables between Fixed Ini...

Showing That the Change in State Variables between Fixed Initial and Final States Is Independent of the Path Followed

It is possible to go from a given initial equilibrium state of a system to a given final equilibrium state by a number of different paths, involving different intermediate states and different amounts of heat and work. Since the internal energy of a system is a state property, its change between any two states must be independent of the path chosen (see Sec. 1.3). The heat and work flows are, however, path-dependent quantities and can differ on different paths between given initial and final states. This assertion is established here by example. One mole of a gas at a temperature of 25°C and a pressure of 1 bar (the initial state) is to be heated and compressed in a frictionless piston and cylinder to 300°C and 10 bar (the final state). Compute the heat and work required along each of the following paths.

Path A. Isothermal (constant temperature) compression to 10 bar, and then isobaric (constant pressure) heating to 300°C

Path B. Isobaric heating to 300°C followed by isothermal compression to 10 bar

Path C. A compression in which PVγ= constant, where γ=CP/CVP \underline{V}^{\gamma}=\text { constant, where } \gamma=C_{ P }^{*} / C_{ V }^{*} , followed by an isobaric cooling or heating, if necessary, to 300°C.

For simplicity, the gas is assumed to be ideal with CPC_{ P }^{*} = 38 J/(mol K).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The 1-mol sample of gas will be taken as the thermodynamic system. The difference form of the mass balance for this closed, deforming volume of gas is
N = constant = 1 mol
and the difference form of the energy balance is

ΔU=QPdV=Q+W\Delta U=Q-\int P d V=Q+W

Path A
i.
Isothermal compression

Wi=V1V2PdV=V1V2RTdVV=RTV1V2dVV=RTlnV2V1=RTlnP2P1=8.314J/(molK)×298.15K×ln101=5707.7J/mol\begin{aligned}W_{ i } &=-\int_{\underline{V}_{1}}^{\underline{V}_{2}} P d V=-\int_{\underline{V}_{1}}^{\underline{V}_{2}} R T \frac{d V}{\underline{V}}=-R T \int_{\underline{V}_{1}}^{\underline{V}_{2}} \frac{d V}{\underline{V}}=-R T \ln \frac{\underline{V}_{2}}{\underline{V}_{1}}=R T \ln \frac{P_{2}}{P_{1}} \\&=8.314 J /( mol K ) \times 298.15 K \times \ln \frac{10}{1}=5707.7 J / mol\end{aligned}

Since

ΔU=T1T2CVdT=CV(T2T1) and T2=T1=25C\Delta \underline{U}=\int_{T_{1}}^{T_{2}} C_{ V }^{*} d T=C_{ V }^{*}\left(T_{2}-T_{1}\right) \quad \text { and } \quad T_{2}=T_{1}=25^{\circ} C

we have

ΔU=0 and Qi=Wi=5707.7J/mol\Delta \underline{U}=0 \quad \text { and } \quad Q_{ i }=-W_{ i }=-5707.7 J / mol

ii. Isobaric heating

Wii=V2V3P2dV=P2V2V3dV=P2(V3V2)=R(T3T2)ΔU=T2T3CVdT=CV(T3T2)\begin{gathered}W_{ ii }=-\int_{\underline{V}_{2}}^{\underline{V}_{3}} P_{2} d V=-P_{2} \int_{\underline{V}_{2}}^{\underline{V}_{3}} d V=-P_{2}\left(\underline{V}_{3}-\underline{V}_{2}\right)=-R\left(T_{3}-T_{2}\right) \\\Delta \underline{U}=\int_{T_{2}}^{T_{3}} C_{ V }^{*} d T=C_{ V }^{*}\left(T_{3}-T_{2}\right)\end{gathered}

and

Qii=ΔUWii=CV(T3T2)+R(T3T2)=(CV+R)(T3T2)=CP(T3T2)\begin{aligned}Q_{ ii } &=\Delta \underline{U}-W_{ ii }=C_{ V }^{*}\left(T_{3}-T_{2}\right)+R\left(T_{3}-T_{2}\right)=\left(C_{ V }^{*}+R\right)\left(T_{3}-T_{2}\right) \\&=C_{ P }^{*}\left(T_{3}-T_{2}\right)\end{aligned}

[This is, in fact, a special case of the general result that at constant pressure for a closed system, Q=CPQ=\int C_{ P }^{*} dT. This is easily proved by starting with

Q˙=dUdt+PdVdt\dot{Q}=\frac{d \underline{U}}{d t}+P \frac{d \underline{V}}{d t}

and using the fact that P is constant to obtain

Q˙=dUdt+ddt(PV)=ddt(U+PV)=dHdt=CPdTdt\dot{Q}=\frac{d \underline{U}}{d t}+\frac{d}{d t}(P \underline{V})=\frac{d}{d t}(\underline{U}+P \underline{V})=\frac{d \underline{H}}{d t}=C_{ P }^{*} \frac{d T}{d t}

Now setting Q=Q˙dt yields Q=CPdT.] Q=\int \dot{Q} d t \text { yields } Q=\int C_{ P }^{*} d T \text {.] }
Therefore,

Wii=8.314J/(molK)×275K=2286.3J/molQii=38J/(molK)×275K=10450J/molQ=Qi+Qii=5707.7+10450=4742.3J/molW=Wi+Wii=5707.72286.3=3421.4J/mol\begin{aligned}W_{ ii } &=-8.314 J /( mol K ) \times 275 K =-2286.3 J / mol \\Q_{ ii } &=38 J /( mol K ) \times 275 K =10450 J / mol \\Q &=Q_{ i }+Q_{ ii }=-5707.7+10450=4742.3 J / mol \\W &=W_{ i }+W_{ ii }=5707.7-2286.3=3421.4 J / mol\end{aligned}

Path B
i.
Isobaric heating

Qi=CP(T2T1)=10450J/molWi=R(T2T1)=2286.3J/mol\begin{aligned}Q_{ i } &=C_{ P }^{*}\left(T_{2}-T_{1}\right)=10450 J / mol \\W_{ i } &=-R\left(T_{2}-T_{1}\right)=-2286.3 J / mol\end{aligned}

ii. Isothermal compression

Wii=RTlnP2P1=8.314×573.15ln(101)=10972.2J/molQii=Wii=10972.2J/molQ=1045010972.2=522.2J/molW=2286.3+10972.2=8685.9J/mol\begin{aligned}W_{ ii } &=R T \ln \frac{P_{2}}{P_{1}}=8.314 \times 573.15 \ln \left(\frac{10}{1}\right)=10972.2 J / mol \\Q_{ ii } &=-W_{ ii }=-10972.2 J / mol \\Q &=10450-10972.2=-522.2 J / mol \\W &=-2286.3+10972.2=8685.9 J / mol\end{aligned}

Path C
i.
Compression with PVγP \underline{V}^{\gamma} = constant

Wi=V1V2PdV=V1V2 constant VγdV= constant 1γ(V21γV11γ)=11γ(P2V2P1V1)=R(T2T1)1γ=R(T2T1)1(CP/CV)=CV(T2T1)\begin{aligned}W_{ i } &=-\int_{\underline{V}_{1}}^{\underline{V}_{2}} P d \underline{V}=-\int_{\underline{V}_{1}}^{\underline{V}_{2}} \frac{\text { constant }}{\underline{V}^{\gamma}} d \underline{V}=-\frac{\text { constant }}{1-\gamma}\left(\underline{V}_{2}^{1-\gamma}-\underline{V}_{1}^{1-\gamma}\right) \\&=-\frac{1}{1-\gamma}\left(P_{2} \underline{V}_{2}-P_{1} \underline{V}_{1}\right)=\frac{-R\left(T_{2}-T_{1}\right)}{1-\gamma}=\frac{-R\left(T_{2}-T_{1}\right)}{1-\left(C_{ P }^{*} / C_{ V }^{*}\right)}=C_{ V }^{*}\left(T_{2}-T_{1}\right)\end{aligned}

where T2T_{2} can be computed from

P1V1γ=P1(RT1P1)γ=P2V2γ=P2(RT2P2)γP_{1} \underline{V}_{1}^{\gamma}=P_{1}\left(\frac{R T_{1}}{P_{1}}\right)^{\gamma}=P_{2} \underline{V}_{2}^{\gamma}=P_{2}\left(\frac{R T_{2}}{P_{2}}\right)^{\gamma}

or

T2T1=(P2P1)(γ1)/γ\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(\gamma-1) / \gamma}

Now

γ=CPCV=38388.314=1.280\gamma=\frac{C_{ P }^{*}}{C_{ V }^{*}}=\frac{38}{38-8.314}=1.280

so that

T2=298.15K(10)0.280/1.280=493.38KT_{2}=298.15 K (10)^{0.280 / 1.280}=493.38 K

and

Wi=CV(T2T1)=(388.314)J/(molK)×(493.38298.15)K=5795.6J/molΔUi=CV(T2T1)=5795.6J/molQi=ΔUiWi=0\begin{aligned}W_{ i } &=C_{ V }^{*}\left(T_{2}-T_{1}\right)=(38-8.314) J /( mol K ) \times(493.38-298.15) K \\&=5795.6 J / mol \\\Delta U_{ i } &=C_{ V }^{*}\left(T_{2}-T_{1}\right)=5795.6 J / mol \\Q_{ i } &=\Delta U_{ i }-W_{ i }=0\end{aligned}

ii. Isobaric heating

Qii=CP(T3T2)=38J/(molK)×(573.15493.38)K=3031.3J/molWii=R(T3T2)=8.314J/(molK)×(573.15493.38)K=663.2J/mol\begin{aligned}&Q_{ ii }=C_{ P }^{*}\left(T_{3}-T_{2}\right)=38 J /( mol K ) \times(573.15-493.38) K =3031.3 J / mol \\&W_{ ii }=-R\left(T_{3}-T_{2}\right)=-8.314 J /( mol K ) \times(573.15-493.38) K =-663.2 J / mol\end{aligned}

and
Q = 0 + 3031.3 = 3031.3 J/mol
W = 5795.6 663.2 = 5132.4 J/mol

 Path Q(J/mol)W(J/mol)Q+W=ΔU(J/mol) A 4742.33421.48163.7 B 522.28685.98163.7 C 3031.35132.48163.7\begin{array}{cccc}\hline \text { Path } & Q( J / mol ) & W( J / mol ) & Q+W=\Delta U( J / mol ) \\\hline \text { A } & 4742.3 & 3421.4 & 8163.7 \\\text { B } & -522.2 & 8685.9 & 8163.7 \\\text { C } & 3031.3 & 5132.4 & 8163.7 \\\hline\end{array}

Comment
Notice that along each of the three paths considered (and, in fact, any other path between the initial and final states), the sum of Q and W, which is equal to ΔU, is 8163.7 J/mol, even though Q and W separately are different along the different paths. This illustrates that whereas the internal energy is a state property and is path independent (i.e., its change in going from state 1 to state 2 depends only on these states and not on the path between them), the heat and work flows depend on the path and are therefore path functions.

Related Answered Questions