Question 12.1.6: Solubility of a Solid in Supercritical Fluid (SCF) Using an ...

Solubility of a Solid in Supercritical Fluid (SCF) Using an EOS

McHugh and Paulaitis [J. Chem. Eng. Data, 25, 326 (1980)] report the following data for the solubility of naphthalene in carbon dioxide at temperatures slightly above the CO _{2} critical temperature and pressures considerably higher than its critical pressure.

T = 35.0°C T = 60.4°C
P (bar) y_{ N } P (bar) y_{ N }
86.8 0.0075 108.4 0.00524
98.2 0.00975 133.8 0.01516
133.0 0.01410 152.5 0.02589
199.5 0.01709 164.2 0.04296
255.3 0.01922 192.6 0.05386
206.0 0.06259

 

Assuming that the CO _{2}-naphthalene mixture obeys the Peng-Robinson equation of state with k_{ CO _{2}- N }=0.103, estimate the solubility of naphthalene in the CO _{2} supercritical fluid (SCF). Also compute the predicted enhancement factors and the contribution of the Poynting factor to the enhancement factor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using the data in Illustration 12.1-1 and Table 6.6-1, and one of the Peng-Robinson mixture programs discussed in Appendix B and on the website to calculate the vapor-phase fugacities, the following results are obtained.

 

P (bar) y_{ N } y_{ N }^{ ID } (Eq. 12.1-19) E Poynting Factor
T = 35°C:
86.8 1.99 \times 10^{-3} 3.21 \times 10^{-6} 619 1.527
98.2 2.87 \times 10^{-3} 2.84 \times 10^{-6} 1 010 1.615
199.5 1.654 \times 10^{-2} 1.40 \times 10^{-6} 11 830 2.647
255.3 1.940 \times 10^{-2} 1.09 \times 10^{-6} 17 759 3.475
T = 60.4°C:
108.4 2.80 \times 10^{-3} 2.21 \times 10^{-5} 126 1.63
133.8 1.05 \times 10^{-2} 1.79 \times 10^{-5} 584 1.828
152.5 1.96 \times 10^{-2} 1.57 \times 10^{-5} 1246 1.989
164 2.64 \times 10^{-2} 1.46 \times 10^{-5} 1806 2.096
192.6 5.25 \times 10^{-2} 1.25 \times 10^{-5} 4211 2.383
206 6.61 \times 10^{-2} 1.17 \times 10^{-5} 5671 2.531

 

\ln \left[\frac{x_{1}\left(T_{1}\right) \gamma_{1}\left(\underline{x}, T_{1}\right)}{x_{1}\left(T_{2}\right) \gamma_{1}\left(\underline{x}, T_{2}\right)}\right]=-\frac{\Delta_{ fus } \underline{H}_{1}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]=-\frac{\triangle_{ fus } \underline{H}_{1}}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right] (12.1-19a)

 

\ln \left[\frac{x_{1}\left(T_{1}\right)}{x_{1}\left(T_{2}\right)}\right]=-\frac{\Delta_{\text {fus }} \underline{H}_{1}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]=-\frac{\triangle_{\text {fus }} \underline{H}_{1}}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right] (12.1-19b)

 

The predicted and measured naphthalene mole fractions in supercritical carbon dioxide are plotted in Fig. 12.1-1.

Comments

1. Note that the predictions for these extreme conditions are good. Indeed, with only one adjustable parameter \left(k_{ CO _{2}- N }=0.103\right), reasonable predictions are obtained for the solubility of naphthalene in supercritical carbon dioxide for a range of temperatures in the near critical region, and to moderately high pressures.

2. The enhancement factors here are very large, in fact, among the larger nonideal corrections encountered in chemical engineering thermodynamics. (Enhancement factors for other mixtures at cryogenic conditions of 10^{9} and larger have been reported.) Note that at T = 35°C and P = 255.3 bar, the solubility of naphthalene is enhanced by a factor of more than 17 700 above its ideal value; however, its total solubility is still small at less than 2 mol%.

3. The solubility of naphthalene in supercritical carbon dioxide at 60.4◦C increases from a mole fraction of 0.00240 at 1 bar (Illustration 12.1-4) to 0.098 at 291.3 bar. This illustrates the large increase in the solubility of a solute that may occur with increasing pressure, which is the basis of supercritical extraction to, for example, remove caffeine from coffee beans or fragrances and oils from plant material.

4. The Poynting corrections in this illustration are large, reaching values greater than 3. Consequently, the Poynting factor could not be ignored in this example. However, the main contribution to the enhancement factor arises from gas-phase nonidealities (the species fugacity coefficient, \bar{\phi}_{ i }).

 

Table 6.6-1 The Critical and Other Constants for Selected Fluids
Substance Symbol Molecular Weight \left( g mol ^{-1}\right) T_{c}( K ) P_{c}( MPa ) V_{c}\left( m ^{3} / kmol \right) Z_{c} ω T_{\text {boil }}( K )
Acetylene C _{2} H _{2} 26.038 308.3 6.14 0.113 0.271 0.184 189.2
Ammonia NH _{3} 17.031 405.6 11.28 0.0724 0.242 0.25 239.7
Argon Ar 39.948 150.8 4.874 0.0749 0.291 -0.004 87.3
Benzene C _{6} H _{6} 78.114 562.1 4.894 0.259 0.271 0.212 353.3
n-Butane C _{4} H _{10} 58.124 425.2 3.8 0.255 0.274 0.193 272.7
Isobutane C _{4} H _{10} 58.124 408.1 3.648 0.263 0.283 0.176 261.3
1-Butene C _{4} H _{8} 56.108 419.6 4.023 0.24 0.277 0.187 266.9
Carbon dioxide CO _{2} 44.01 304.2 7.376 0.094 0.274 0.225 194.7
Carbon monoxide CO 28.01 132.9 3.496 0.0931 0.295 0.049 81.7
Carbon tetrachloride CCl _{4} 153.823 556.4 4.56 0.276 0.272 0.194 349.7
n-Decane C _{10} H _{22} 142.286 617.6 2.108 0.603 0.247 0.49 447.3
n-Dodecane C _{12} H _{26} 170.34 658.3 1.824 0.713 0.24 0.562 489.5
Ethane C _{2} H _{6} 30.07 305.4 4.884 0.148 0.285 0.098 184.5
Ethyl ether C _{4} H _{10} O 74.123 466.7 3.638 0.28 0.262 0.281 307.7
Ethylene C _{2} H _{4} 28.054 282.4 5.036 0.129 0.276 0.085 169.4
Helium He 4.003 5.19 0.227 0.0573 0.301 -0.387 4.21
n-Heptane C _{7} H _{16} 100.205 540.2 2.736 0.304 0.263 0.351 371.6
n-Hexane C _{6} H _{14} 86.178 507.4 2.969 0.37 0.26 0.296 341.9
Hydrogen H _{2} 2.016 33.2 1.297 0.065 0.305 -0.22 20.4
Hydrogen fluoride HF 20.006 461 6.488 0.069 0.12 0.372 292.7
Hydrogen sulfide H _{2} S 34.08 373.2 8.942 0.0985 0.284 0.1 212.8
Methane CH _{4} 16.043 190.6 4.6 0.099 0.288 0.008 111.7
Naphthalene C _{10} H _{8} 128.174 748.4 4.05 0.41 0.267 0.302 491.1
Neon Ne 20.183 44.4 2.756 0.0417 0.311 0 27
Nitric oxide NO 30.006 180 6.485 0.058 0.25 0.607 121.4
Nitrogen N _{2} 28.013 126.2 3.394 0.0895 0.29 0.04 77.4
n-Octane C _{8} H _{18} 114.232 568.8 2.482 0.492 0.259 0.394 398.8
Oxygen O _{2} 31.999 154.6 5.046 0.0732 0.288 0.021 90.2
n-Pentane C _{5} H _{12} 72.151 469.6 3.374 0.304 0.262 0.251 309.2
Isopentane C _{5} H _{12} 72.151 460.4 3.384 0.306 0.271 0.227 301
Propane C _{3} H _{8} 44.097 369.8 4.246 0.203 0.281 0.152 231.1
Propylene C _{3} H _{6} 42.081 365 4.62 0.181 0.275 0.148 225.4
Refrigerant R12 CCl _{2} F _{2} 120.914 385 4.124 0.217 0.28 0.176 243.4
Refrigerant HFC-134a CH _{2} FCF _{3} 102.03 374.23 4.06 0.198 0.258 0.332 247.1
Sulfur dioxide SO _{2} 64.063 430.8 7.883 0.122 0.268 0.251 263
Toluene C _{7} H _{8} 92.141 591.7 4.113 0.316 0.264 0.257 383.8
Water H _{2} O 18.015 647.3 22.048 0.056 0.229 0.344 373.2
Xenon Xe 131.3 289.7 5.836 0.118 0.286 0.002 165
Source: Adapted from R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed.,McGraw-Hill, New York, 1986, Appendix A and other sources.
12.1.6

Related Answered Questions