Question 5.12: Use the result of Ex. 5.6 to calculate the magnetic field at...

Use the result of Ex. 5.6 to calculate the magnetic field at the center of a uniformly charged spherical shell, of radius R and total charge Q, spinning at constant angular velocity ω.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Field (at center of sphere) due to the ring at \theta (see figure) is (Eq. 5.41):

B(z)=\frac{\mu_{0} I}{4 \pi}\left(\frac{\cos \theta}{ᴫ^{2}}\right) 2 \pi R=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}                                    (5.41)

d B=\frac{\mu_{0} d I}{2} \frac{(R \sin \theta)^{2}}{\left[(R \sin \theta)^{2}+(R \cos \theta)^{2}\right]^{3 / 2}}=\frac{\mu_{0}}{2 R} \sin ^{2} \theta d I .

d I=K R d \theta, \quad K=\sigma v, \quad \sigma=\frac{Q}{4 \pi R^{2}}, \quad v=\omega R \sin \theta ,

so

d I=\frac{Q}{4 \pi R^{2}} \omega R \sin \theta R d \theta=\frac{Q \omega}{4 \pi} \sin \theta d \theta .

B=\frac{\mu_{0}}{2 R} \frac{Q \omega}{4 \pi} \int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{\mu_{0} Q \omega}{8 \pi R}\left(\frac{4}{3}\right) . \quad B =\frac{\mu_{0} Q \omega}{6 \pi R} \hat{ z } .

5.12

Related Answered Questions