Question 5.30: Use the results of Ex. 5.11 to find the magnetic field insid...

Use the results of Ex. 5.11 to find the magnetic field inside a solidsphere, of uniform charge density ρ and radius R, that is rotating at a constant angular velocity ω.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use Eq. 5.69, with  R \rightarrow \bar{r} \text { and } \sigma \rightarrow \rho d \bar{r} :

A (r, \theta, \phi)= \begin{cases}\frac{\mu_{0} R \omega \sigma}{3} r \sin \theta \hat{ \phi }, & (r \leq R), \\ \frac{\mu_{0} R^{4} \omega \sigma}{3} \frac{\sin \theta}{r^{2}} \hat{ \phi }, & (r \geq R).\end{cases}                              (5.69)

A =\frac{\mu_{0} \omega \rho}{3} \frac{\sin \theta}{r^{2}} \hat{\phi} \int_{0}^{r} \bar{r}^{4} d \bar{r}+\frac{\mu_{0} \omega \rho}{3} r \sin \theta \hat{\phi} \int_{r}^{R} \bar{r} d \bar{r}

 

=\left(\frac{\mu_{0} \omega \rho}{3}\right) \sin \theta\left[\frac{1}{r^{2}}\left(\frac{r^{5}}{5}\right)+\frac{r}{2}\left(R^{2}-r^{2}\right)\right] \hat{\phi}=\frac{\mu_{0} \omega \rho}{2} r \sin \theta\left(\frac{R^{2}}{3}-\frac{r^{2}}{5}\right) \hat{\phi} .

 

B = \nabla \times A =\frac{\mu_{0} \omega \rho}{2}\left\{\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta r \sin \theta\left(\frac{R^{2}}{3}-\frac{r^{2}}{5}\right)\right] \hat{ r }-\frac{1}{r} \frac{\partial}{\partial r}\left[r^{2} \sin \theta\left(\frac{R^{2}}{3}-\frac{r^{2}}{5}\right)\right] \hat{ \theta }\right\}

 

=\mu_{0} \omega \rho\left[\left(\frac{R^{2}}{3}-\frac{r^{2}}{5}\right) \cos \theta \hat{ r }-\left(\frac{R^{2}}{3}-\frac{2 r^{2}}{5}\right) \sin \theta \hat{ \theta }\right] .

Related Answered Questions