Question 2.8: A high strength steel rod is compressed by axial force P. Wh......

A high strength steel rod is compressed by axial force P. When there is no axial load, the diameter of the rod is 50 mm. In order to maintain certain clearances, the diameter of the rod must not exceed 50.02 mm. What is the largest permissible load P? Given E = 200 GPa, Poisson’s ratio = 0.3.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

This problem is almost similar to the previous one. We first calculate the lateral strain and longitudinal strain and then arrive at the value of load P.

\text { Lateral strain }=\varepsilon_{\text {lat }}=\frac{\text { change in diameter }}{\text { original diameter }}=\frac{50.02-50}{50}=4 \times 10^{-4}

\text { Longitudinal strain }=\varepsilon_{ long }=\frac{\sigma}{E}=\frac{P}{A \cdot E}=\frac{P}{\left(\pi 50^2 / 4\right) 200 \times 10^3}

\text { On simplification, } \varepsilon_{\text {long }}=2.546 \times 10^{-9} P

We know that,  \frac{1}{m}=\frac{\varepsilon_{\text {lat }}}{\varepsilon_{\text {long }}}, \quad \therefore \quad 0.3=\frac{4 \times 10^{-4}}{2.546 \times 10^{-9} P}

on solving,          P = 523598.78 N            or             523.6 kN.

Related Answered Questions

Question: 2.10

Verified Answer:

To prove this, we shall consider a cube of a mater...