Question 20.10: Calculating the Cell emf from Free-Energy Change Suppose the...

Calculating the Cell emf from Free-Energy Change 

Suppose the reaction of zinc metal and chlorine gas is utilized in a voltaic cell in which zinc ions and chloride ions are formed in aqueous solution.

\mathrm{Zn}(s)+\mathrm{Cl}_{2}(g) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\longrightarrow} \mathrm{Zn}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)

Calculate the standard emf for this cell at 25^{\circ} \mathrm{C} from standard free energies of formation (see Appendix C).

PROBLEM STRATEGY

Calculate \Delta G^{\circ} and substitute it and the value of n into the equation \Delta G^{\circ}= -n F E_{\text {cell. }}^{\circ} Solve for E_{\text {cell. }}^{\circ}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Write the equation with \Delta G_{f}^{\circ} ‘s beneath.

\begin{array}{ccccc} \mathrm{Zn}(s)& +\mathrm{Cl}_{2}(g) & \longrightarrow \mathrm{Zn}^{2+}(a q)+ & 2 \mathrm{Cl}^{-}(a q) \\ \Delta G_{f}^{\circ}: 0 & 0 & -147.0 & 2 \times(-131.3) \mathrm{kJ} \end{array}

Hence,

\begin{aligned} \Delta G^{\circ} & \left.=\sum n \Delta G_{f}^{\circ} \text { (products }\right)-\sum m \Delta G_{f}^{\circ}(\text { reactants }) \\ & =[-147.0+2 \times(-131.3)] \mathrm{kJ} \\ & =-410 \mathrm{~kJ}=-4.10 \times 10^{5} \mathrm{~J} \end{aligned}

You obtain n by splitting the reaction into half-reactions.

\begin{aligned} & \mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \\ & \mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(a q) \end{aligned}

Each half-reaction involves the transfer of two moles of electrons, so n=2. Now you substitute into

\begin{aligned} \Delta G^{\circ} & =-n F E_{\text {cell }}^{\circ} \\ -4.10 \times 10^{5} \mathrm{~J} & =-2 \mathrm{~mol} \mathrm{e}^{-} \times 96,500 \mathrm{C} / \mathrm{mol} \mathrm{e}^{-} \times 10^{4} \mathrm{C} \times E_{\text {cell }}^{\circ} \end{aligned}

Solving for E_{\text {cell }}^{\circ}, you get \boldsymbol{E}_{\text {cell }}^{\circ}=\mathbf{2 . 1 2} \mathrm{V}.

Related Answered Questions