Question 9.8: Determining the Efficiency of an Epicyclic Gear Train.* Find...

Determining the Efficiency of an Epicyclic Gear Train.*
Find the overall efficiency of the epicyclic train shown in Figure 9-43. The basic efficiency E0 is 0.9928 and the gear tooth numbers are: N_{ A }=82 t , N_{B}=84 t , N_{C}=86 t , N_{D}=82 t , N_{E}=82 t , \text { and } N_{F}=84 t . Gear A (shaft 2) is fixed to the frame, providing a zero velocity input. The arm is driven as the second input.

Screenshot 2022-02-04 170007
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1 Find the basic ratio ρ for the gear train using equations 9.14 and 9.15. Note that gears B and C have the same velocity as do gears D and E, so their ratios are 1 and thus are omitted.

R=\pm \frac{\text { product of number of teeth on driver gears }}{\text { product of number of teeth on driven gears }}=\frac{\omega_{L}-\omega_{\text {arm }}}{\omega_{F}-\omega_{\text {arm }}}                      (9.14)

 

\text { if }|R| \geq 1 \text {, then } \rho=R \text { else } \rho=1 / R                        (9.15)

 

\rho=\frac{N_{F} N_{D} N_{B}}{N_{E} N_{C} N_{A}}=\frac{84(82)(84)}{82(86)(82)}=\frac{1764}{1763} \cong 1.000567                       (a)

2 The combination of ρ > 1, shaft 2 fixed and input to the arm corresponds to Case 2 in Table 9-12, giving an efficiency of:

\eta=\frac{E_{0}(\rho-1)}{\rho-E_{0}}=\frac{0.9928(1.000567-1)}{1.000567-0.9928}=0.073=7.3 \%                   (b)

3 This is a very low efficiency which makes this gearbox essentially useless. About 93% of the input power is being circulated within the gear train and wasted as heat.

TABLE 9-12 Torques and Efficiencies in an Epicyclic \text { Train }^{[4]}
\begin{array}{ccccccccc}\text { Case } & \rho & \begin{array}{l}\text { Fixed } \\\text { Shaft }\end{array} & \begin{array}{l}\text { Input } \\\text { Shaft }\end{array} & \begin{array}{c}\text { Train } \\\text { Ratio }\end{array} & T _{1} & T _{2} & T _{\text {arm }} & \text { Efficiency (η) } \\\hline 1 & >+1 & 2 & 1 & 1-\rho & -\frac{T_{\text {arm }}}{1-\rho E_{0}} & \frac{\rho E_{0} T_{\text {arm }}}{1-\rho E_{0}} & T_{\text {arm }} & \frac{\rho E_{0}-1}{\rho-1} \\2 & >+1 & 2 & \text { arm } & \frac{1}{1-\rho} & T_{1} & -\rho \frac{T_{1}}{E_{0}} & \left(\frac{\rho-E_{0}}{E_{0}}\right) T_{1} & \frac{E_{0}(\rho-1)}{\rho-E_{0}} \\3 & >+1 & 1 & 2 & \frac{\rho-1}{\rho} & \frac{T_{\text {arm }}}{\rho E_{0}-1} & -\frac{\rho E_{0} T_{\text {arm }}}{\rho E_{0}-1} & T_{\text {arm }} & \frac{\rho E_{0}-1}{E_{0}(\rho-1)} \\4 & >+1 & 1 & \text { arm } & \frac{\rho}{\rho-1} & -\frac{E_{0}}{\rho} T_{2} & T_{2} & -\left(\frac{\rho-E_{0}}{\rho}\right) T_{2} & \frac{\rho-1}{\rho-E_{0}} \\5 & \leq-1 & 2 & 1 & 1-\rho & -\frac{T_{\text {arm }}}{1-\rho E_{0}} & \frac{\rho E_{0} T_{\text {arm }}}{1-\rho E_{0}} & T_{\text {arm }} & \frac{\rho E_{0}-1}{\rho-1} \\6 & \leq-1 & 2 & \text { arm } & \frac{1}{1-\rho} & T_{1} & -\rho \frac{T_{1}}{E_{0}} & \left(\frac{\rho-E_{0}}{E_{0}}\right) T_{1} & \frac{E_{0}(\rho-1)}{\rho-E_{0}} \\7 & \leq-1 & 1 & 2 & \frac{\rho-1}{\rho} & \frac{E_{0} T_{\text {arm }}}{\rho-E_{0}} & -\frac{\rho T_{\text {arm }}}{\rho-E_{0}} & T_{\text {arm }} & \frac{\rho-E_{0}}{\rho-1} \\ 8 & \leq-1 & 1 & \text { arm } & \frac{\rho}{\rho-1} &  -\frac{T_{2}}{\rho E_{0}} & T_{2} & -\left(\frac{\rho E_{0}-1}{\rho E_{0}}\right) T_{2} & \frac{E_{0}(\rho-1)}{\rho E_{0}-1}\end{array}

Related Answered Questions

Question: 9.3

Verified Answer:

1 Though it is not at all necessary to have intege...