Holooly Plus Logo

Question 9.2: A 1/4 -hP, 110-V, 60-Hz, four-pole, capacitor-start motor ha......

A \frac{1}{4}-hP, 110-V, 60-Hz, four-pole, capacitor-start motor has the following equivalent circuit parameter values (in Ω) and losses:

R_{1,main} = 2.02 \quad X_{1,main} = 2.79 \quad R_{2,main} = 4.12\\ X_{2,main} = 2.12 \quad X_{m.main} = 66.8\\ \\ \text{Core loss} = 24 ~W \quad \text{Friction and windage loss}= 13 ~W

For a slip of 0.05, determine the stator current, power factor, power output, speed, torque, and efficiency when this motor is running as a single-phase motor at rated voltage and frequency with its starting winding open.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The first step is to determine the values of the forward- and backward-field impedances at the assigned value of slip. The following relations, derived from Eq. 9.4, simplify the computations of the forward-field impedance Z_f:

Z_f ≡ R_f + jX_f ≡\left( \frac{R_{2,main}}{s}+jX_{2,main}\right)  \text{in parallel with}  jX_{m,main} \quad \quad \quad (9.4)

R_f=\left( \frac{X_{m,main}^2}{X_{22}}\right) \frac{1}{sQ_{2,main} +1/(sQ_{2,main})} \quad X_f=\frac{X_{2,main}X_{m,main}}{X_{22}}+\frac{R_f}{sQ_{2,main}}

where

X_{22}=X_{2,main}+X_{m,main} \quad and \quad Q_{2,main}=\frac{X_{22}}{R_{2,main}}

Substitution of numerical values gives, for s = 0.05,

Z_f = R_f + jX_f = 31.9 + j40.3 ~Ω

Corresponding relations for the backward-field impedance Z_b are obtained by substituting 2 – s for s in these equations. When (2  –  s) Q_{2,main} is greater than 10, as is usually the case, less than 1 percent error results from use of the following approximate forms:

R_b=\frac{R_{2,main}}{2  –  s} \left( \frac{X_{m,main}}{X_{22}}\right)^2 \quad X_b=\frac{X_{2,main}X_{m,main}}{X_{22}}+\frac{R_b}{(2  –  s)Q_{2,main}}

Substitution of numerical values gives, for s = 0.05,

Z_b = R_b + jX_b = 1.98 + j2.12 ~Ω

Addition of the series elements in the equivalent circuit of Fig. 9.11c gives

\begin{array}{l} R_{1, \text { main }}+j X_{1, \text { main }}=2.02+j 2.79 \\ \\ 0.5\left(R_{\mathrm{f}}+j X_{\mathrm{f}}\right)=15.95+j 20.15 \\ \\ \underline{{0.5\left(R_{\mathrm{b}}+j X_{\mathrm{b}}\right)}}= \underline{0.99+j1.06} \\ \\{\text { Total Input } Z}=18.96+j 24.00=30.6 \angle 51.7^{\circ}\\ \\ \text { Stator current } I=\frac{V}{Z}=\frac{110}{30.6}=3.59  \mathrm{~A} \\ \\ \text { Power factor }=\cos \left(51.7^{\circ}\right)=0.620 \end{array}

\text{Power input}=P_{\text {in }}=V I \times \text{power factor} =110 \times 3.59 \times 0.620=244 \mathrm{~W}

The power absorbed by the forward field (Eq. 9.7) is

P_{\mathrm{gap}, f}=I^{2}\left(0.5 R_{\mathrm{f}}\right)=3.59^{2} \times 15.95=206 \mathrm{~W}

The power absorbed by the backward field (Eq. 9.9) is

P_{\mathrm{gap}, \mathrm{b}}=I^{2}\left(0.5 R_{\mathrm{b}}\right)=3.59^{2} \times 0.99=12.8 \mathrm{~W}

The internal mechanical power (Eq. 9.14) is

P_{\text {mech }}=(1  –  s)ω_s T_{mech}=(1-s)\left(P_{\text {gap }, \mathrm{f}}-P_{\mathrm{gap}, \mathrm{b}}\right) \quad \quad \quad (9.14)

P_{\text {mech }}=(1-s)\left(P_{\text {gap }, \mathrm{f}}-P_{\mathrm{gap}, \mathrm{b}}\right)=0.95(206-13)=184 \mathrm{~W}

Assuming that the core loss can be combined with the friction and windage loss, the rotational loss becomes 24 + 13 = 37 W and the shaft output power is the difference. Thus

P_{\text {shaft }}=184-37=147 \mathrm{~W}=0.197  \mathrm{hp}

From Eq. 4.40, the synchronous speed in rad/sec is given by

\omega_{\mathrm{s}}=\left(\frac{2}{\text { poles }}\right) \omega_{\mathrm{e}}=\left(\frac{2}{4}\right) 120 \pi=188.5  \mathrm{rad} / \mathrm{sec}

or in terms of r/min from Eq. 4.41

n_{s}=\left(\frac{120}{\text { poles }}\right) f_{\mathrm{e}} \quad r/min \quad \quad \quad (4.41)

\begin{array}{l}n_{s}=\left(\frac{120}{\text { poles }}\right) f_{\mathrm{e}}=\left(\frac{120}{4}\right) 60=1800  \mathrm{r} / \mathrm{min} \\ \\ \begin{aligned} \text { Rotor speed } &=(1-s)(\text { synchronous speed }) \\ \\ &=0.95 \times 1800=1710  \mathrm{r} / \mathrm{min}\end{aligned}\end{array}

and

\omega_{\mathrm{m}}=0.95 \times 188.5=179  \mathrm{rad} / \mathrm{sec}

The torque can be found from Eq. 9.14.

T_{\text {shaft }}=\frac{P_{\text {shaft }}}{\omega_{\mathrm{m}}}=\frac{147}{179}=0.821 \mathrm{~N} \cdot \mathrm{m}

and the efficiency is

\eta=\frac{P_{\text {shaft }}}{P_{\text {in }}}=\frac{147}{244}=0.602=60.2 \%

As a check on the power bookkeeping, compute the losses:

\begin{array}{l} \begin{aligned}I^{2} R_{1, \text { main }}=(3.59)^{2}(2.02)=26.0 \\ \\ \text { Forward-field rotor } I^{2} R(\text { Eq. } 9.11)=0.05 \times 206=10.3 \\ \\ \text { Backward-field rotor } I^{2} R(\text { Eq. } 9.12)=1.95 \times 12.8=25.0 \\ \\ \text { Rotational losses }=\underline{37.0} \\ \quad \quad 98.3 \mathrm{~W}\end{aligned}\end{array}

\text{Forward-field rotor}  I^2 R = s  P_{\mathrm{gap,f}} \quad \quad \quad (9.11)

\text{Backward-field rotor}  I^2 R = (2  –  s)  P_{\mathrm{gap,b}} \quad \quad \quad (9.12)

From P_{\text {in }}-P_{\text {shaft }}, the total losses = 97 W which checks within accuracy of computations.

9.11

Related Answered Questions