Holooly Plus Logo

Question 9.5: A two-pole, single-phase induction motor has the following p......

A two-pole, single-phase induction motor has the following parameters

L_{main} = 80.6 ~mH \quad  R_{main} = 0.58 ~Ω \\ \\L_{aux} = 196 ~mH  \quad R_{aux}= 3.37 ~Ω\\ \\ L_r = 4.7 ~μH   \quad R_r = 37.6 ~μΩ\\ \\ L_{main,r} = 0.588 ~mH \quad L_{aux,r}= 0.909 ~mH

It is operated from a single-phase, 230-V rms, 60-Hz source as a permanent-split-capacitor motor with a 35 μF capacitor connected in series with the auxiliary winding. In order to achieve the required phase shift of the auxiliary-winding current, the windings must be connected with the polarities shown in Fig. 9.17. The motor has a rotational losses of 40 W and 105 W of core loss.

Consider motor operation at 3500 r/min.

a. Find the main-winding, auxiliary-winding and source currents and the magnitude of the capacitor voltage.

b. Find the time-averaged electromagnetic torque and shaft output power.

c. Calculate the motor input power and its electrical efficiency. Note that since core loss isn’t explicitly accounted for in the model derived in this section, you may simply consider it as an additional component of the input power.

d. Plot the motor time-averaged electromagnetic torque as a function of speed from standstill to synchronous speed.

9.17
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

MATLAB, with its ease of handling complex numbers, is ideal for the solution of this problem.

a. The main winding of this motor is directly connected to the single-phase source. Thus we directly set \hat{V}_{main} = \hat{V}_ s. However, the auxiliary winding is connected to the single-phase source through a capacitor and its polarity is reversed. Thus we must write

\hat{V}_{aux} + \hat{V}_C =- \hat{V}_s

where the capacitor voltage is given by

\hat{V}_C=j \hat{I}_{aux} X_C

Here the capacitor impedance X_C is equal to

X_{\mathrm{C}}=-\frac{1}{\left(\omega_{\mathrm{e}} C\right)}=-\frac{1}{\left(120 \pi \times 35 \times 10^{-6}\right)}=-75.8  \Omega

Setting \hat{V}_{\mathrm{s}}=V_{0}=230  \mathrm{~V} and substituting these expressions into Eqs. 9.43 and 9.44 and using Eqs. 9.39 and 9.40 then gives the following matrix equation for the main- and auxiliary-winding currents.

\hat{λ}_{main}= [L_{main}  –  jL_{main,r}^2(\hat{K}^+ +\hat{K}^-)] \hat{I}_{main}+ L_{main,r} L_{aux,r} (\hat{K}^+ -\hat{K}^-)\hat{I}_{aux} \quad \quad \quad (9.39)

 

\hat{λ}_{aux}= -L_{main ,r} L_{aux,r} (\hat{K}^+  –  \hat{K}^-)\hat{I}_{main} + [L_{aux}  –  jL_{aux,r}^2 (\hat{K}^+ +  \hat{K}^-)]\hat{I}_{aux} \quad \quad (9.40)

 

\hat{V}_{main}=\hat{I}_{main} R_{main} +j ω_e\hat{λ}_{main} \quad \quad (9.43) \\ \hat{V}_{aux}=\hat{I}_{aux} R_{aux} +j ω_e\hat{λ}_{aux} \quad \quad (9.44)

 

\left[\begin{array}{cc}\left(R_{\text {main }}+j \omega_{\mathrm{e}} \hat{A}_{1}\right) & j \omega_{\mathrm{e}} \hat{A}_{2} \\-j \omega_{\mathrm{e}} \hat{A}_{2} & \left(R_{\mathrm{aux}}+j X_{\mathrm{c}}+j \omega_{\mathrm{e}} \hat{A}_{3}\right)\end{array}\right]\left[\begin{array}{c}\hat{I}_{\text {main }} \\ \hat{I}_{\mathrm{aux}}\end{array}\right]=\left[\begin{array}{c}V_{0} \\-V_{0}\end{array}\right]

where

\begin{array}{c}\hat{A}_{1}=L_{\text {main }}-j L_{\text {main }, r}^{2}\left(\hat{K}^{+}+\hat{K}^{-}\right) \\ \hat{A}_{2}=L_{\text {main }, \mathrm{r}} L_{\text {aux }, \mathrm{r}}\left(\hat{K}^{+}-\hat{K}^{-}\right)\end{array}

and

\hat{A}_{3}=L_{\text {aux }}-j L_{\text {aux.r}}^{2}\left(\hat{K}^{+}+\hat{K}^{-}\right)

The parameters \hat{K}^{+} and \hat{K}^{-} can be found from Eqs. 9.41 and 9.42 once the slip is found using Eq. 6.1

\hat{K}^+ =\frac{sω_e}{2(R_r+j s ω_e L_r)} \quad \quad \quad (9.41)

\hat{K}^+ =\frac{(2  –  s)ω_e}{2(R_r+j (2  –  s) ω_e L_r)} \quad \quad \quad (9.42)

s=\frac{n_{\mathrm{s}}-n}{n_{\mathrm{s}}}==\frac{3600  –  3500}{3600}=0.278

This matrix equation can be readily solved using MATLAB with the result

\begin{array}{l}\hat{I}_{\text {main }}=15.9 \angle-37.6^{\circ} \mathrm{A} \\\hat{I}_{\text {aux }}=5.20 \angle-150.7^{\circ} \mathrm{A}\end{array}

and

\hat{I}_{\mathrm{s}}=18.5 \angle-22.7^{\circ}  \mathrm{A}

The magnitude of the capacitor voltage is

\left|\hat{V}_{\mathrm{C}}\right|=\left|\hat{I}_{\mathrm{aux}} X_{\mathrm{C}}\right|=374 \mathrm{~V}

b. Using MATLAB the time-averaged electromagnetic torque can be found from Eq. 9.49 to be

\begin{aligned}<T_{mech}> & = \left( \frac{poles}{2}\right) Re[(L_{main,r}^2 \hat{I}_{main} \hat{I}_{main}^* + L_{aux,r}^2 \hat{I}_{aux}\hat{I}_{aux}^*)(\hat{K}^+  –  \hat{K}^-)^* \\ & + jL_{main,r}L_{aux,r}(\hat{I}_{main}^* \hat{I}_{aux}  –  \hat{I}_{main} \hat{I}_{aux}^*)(\hat{K}^+ + \hat{K}^-)^*] \quad \quad (9.49)\end{aligned}

<T_{\text {mech }}>=9.74 \mathrm{~N} \cdot \mathrm{m}

The shaft power can then be found by subtracting the rotational losses P_{rot} from the air-gap power

\begin{aligned}P_{\text {shaft }} & =\omega_{\mathrm{m}}<T_{\text {mech }}>-P_{\mathrm{rot}} \\& =\left(\frac{2}{\text { poles }}\right)(1-s) \omega_{\mathrm{e}}\left(<T_{\text {mech }}>\right)-P_{\mathrm{rot}} \\& =3532  \mathrm{~W}\end{aligned}

c. The power input to the main winding can be found as

P_{\text {main }}=\operatorname{Re}\left[V_{0} \hat{I}_{\text {main }}^{*}\right]=2893 \mathrm{~W}

and that into the auxiliary winding, including the capacitor (which dissipates no power)

P_{\text {aux }}=\operatorname{Re}\left[-V_{0} \hat{I}_{\text {aux }}^{*}\right]=1043 \mathrm{~W}

The total input power, including the core loss power P_{core} is found as

P_{\text {in }}=P_{\text {main }}+P_{\text {aux }}+P_{\text {core }}=4041 \mathrm{~W}

Finally, the efficiency can be determined

\eta=\frac{P_{\text {shaft }}}{P_{\text {in }}}==0.874=87.4 \%

d. The plot of < T_{mech} > versus speed generated by MATLAB is found in Fig. 9.18.

Here is the MATLAB script:

The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

clc

clear

% Source parameters

V0 = 230 ;

omegae = 120*pi ;

% Motor parameters

poles = 2;

Lmain = .0806 ;

Rmain = 0.58 ;

Laux = 0.196 ;

Raux = 3.37 ;

Lr = 4.7e-6 ;

Rr = 37.6e-6 ;

Lmainr = 5.88e-4 ;

Lauxr = 9.09e-4 ;

C = 35e-6 ;

Xc = -1/ (omegae*C) ;

Prot = 40 ;

Pcore = 105 ;

% Run through program twice. If calcswitch = 1, then

% calculate at speed of 3500 r/min only. The second time

% program will produce the plot for part (d).

for calcswitch = 1:2

if calcswitch == 1

mmax : 1;

else

mmax = 101 ;

end

for m = 1:mmax

if calcswitch == 1

speed (m) = 3500 ;

else

speed (m) = 3599 * (m-1)/100;

end

% Calculate the slip

ns = (2/poles)*3600 ;

s = (ns-speed (m) )/ns ;

% part (a)

% Calculate the various complex constants

Kplus = s*omegae/ (2* (Rr + j*s*omegae*Lr) ) ;

Kminus = (2-s) * omegae/ (2 * (Rr + j * (2-s) *omegae*Lr) ) ;

A1 = Lmain - j * Lmainr^2 *(Kplus+Kminus) ;

A2 = Lmainr*Lauxr* (Kplus-Kminus) ;

A3 = Laux - j*Lauxr^2 *(Kplus+Kminus) ;

% Set up the matrix

M(1,1) = Rmain + j*omegae*A1;

M(1,2) = j*omegae*A2;

M(2,1) = -j*omegae*A2;

M(2,2) = Raux + j*Xc+ j*omegae*A3;

% Here is the voltage vector

V = [V0 ; -V0];

% Now find the current matrix

I = M\V;

Imain = I (1) ;

Iaux = I(2);

Is = Imain-Iaux;

magImain = abs (Imain) ;

angleImain = angle(Imain)*180/pi;

magIaux = abs (Iaux) ;

angleIaux = angle(Iaux)*180/pi;

magIs = abs(Is) ;

angleIs = angle(Is)*180/pi;

%Capacitor voltage

Vcap = Iaux*Xc;

magVcap = abs (Vcap) ;

% part (b)

Tmech1 = conj (Kplus-Kminus) ;

Tmech1 = Tmech1*(Lmainr^2*Imain*conj (Imain)+Lauxr^2*Iaux*conj (Iaux));

Tmech2 = j*Lmainr*Lauxr*conj (Kplus+Kminus) ;

Tmech2 = Tmech2*(conj(Imain)*Iaux-Imain*conj(Iaux));

Tmech(m) = (poles/2)*real(Tmech1+Tmech2) ;

Pshaft = (2/poles)*(1-s)*omegae*Tmech(m)-Prot;

%part (c)

Pmain = real(V0*conj (Imain)) ;

Paux = real(-V0*conj (Iaux)) ;

Pin = Pmain+Paux+Pcore;

eta = Pshaft/Pin;

if calcswitch == 1

fprintf ( 'part (a) : ')

fprintf ('\n Imain = %g A at angle %g degrees',magImain,angleImain)

fprintf ( '\n Iaux = %g A at angle %g degrees',magIaux,angleIaux)

fprintf ( '\n Is = %g A at angle %g degrees',magIs,angleIs)

fprintf ( '\n Vcap = %g V\n' ,magVcap)

fprintf ( '\npart (b) :')

fprintf ( '\n Tmech = %g N-m',Tmech)

fprintf ( '\n Pshaft = %g W\n',Pshaft)

fprintf ( '\npart (c) :')

fprintf ( '\n Pmain = %g W',Pmain)

fprintf ( '\n Paux = %g W',Paux)

fprintf ( '\n Pin = %g W',Pin)

fprintf ( '\n eta = %g percent\n\n',100*eta)

else

plot (speed, Tmech)

xlabel ('speed [r/min] ')

ylabel ('<Tmech> [N-m] ')

end

end %end of for m loop

end %end of for calcswitch loop

9.18

Related Answered Questions