Holooly Plus Logo

Question 15.5: A 10-ton refrigeration unit operates on R-22, has a single-s......

A 10-ton refrigeration unit operates on R-22, has a single-stage reciprocating compressor with a clearance volume of 3 percent, and operates at 1725 rpm. The refrigerant leaves the evaporator at 70 psia and 40 F. Pressure loss in the evaporator is 5 psi. Pressure loss in the suction valve is 2 psi, and there is 20 F superheat at the beginning of the compression stroke. The compressor discharge pressure is 300 psia, a pressure loss of 5 psi exists in the discharge valve, and the vapor is desuperheated 10 F between the compressor discharge and the condenser inlet. The pressure loss in tubing between the compressor and condenser is negligible, but the condenser pressure loss is 5 psi.
The liquid has a temperature of 110 F at the expansion valve. Determine the following: (a) compressor volumetric efficiency, (b) compressor piston displacement, (c) shaft power input with mechanical efficiency of 75 percent, (d) heat rejected in the condenser, and (e) power input to compressor per ton of cooling effect.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Most of the state points as shown in Fig. 15-16 may be located from the given data:

P_{1}  =  290  psia,   T_{1}  =  110  F,  i_{2}  =  i_{1}

P_{3^{′}}  =  70  psia,  t_{3^{′}}  =  40  F,  P_{2}  =  P_{3^{′}}  +  5  =  75  psia

P_{a}  =  P_{b}  =  P_{3^{′}}  –  2  =  68  psia,  t_{b}  =  50  F

P_{c}  =  P_{d}  =  300  psia,    P_{4}  =  P_{4^{′}}  =  P_{c}  –  5  =  295  psia

States c, d, and 4 may be completely determined following the compressor and evaporator analysis. From Chart 4 in Appendix E, v_{3}  =  0.78  ft^{3}/lbm  and  v_{b}  =  0.81  ft^{3}/lbm. Assuming that n = k = 1.16, the volumetric efficiency may be computed from Eq. 15-8 as

\eta _{v}  =  \left[1  +  C  –  C \left\lgroup\frac{P_{c}}{P_{b}} \right\rgroup^{1/n} \right]  \frac{v_{3}}{v_{b}}                                  (15-8)

\eta _{v}  =  \left[1  +  0.03  –  (0.03)  \left\lgroup\frac{300}{68} \right\rgroup^{1/1.16} \right]  \frac{0.78}{0.81}  =  0.89

For the evaporator

\dot{q}_{e}  =  \dot{m}  (i_{3^{′}}  –  i_{2})  =  \dot{m}  (i_{3^{′}}  –  i_{1})

or

\dot{m}  =  \frac{\dot{q}_{e}}{i_{3^{′}}  –  i_{1}}

From Chart 5 in Appendix E, i_{3^{′}}  =  109  Btu/lbm,  i_{1}  =  41   Btu/lbm, and

\dot{m}  =  \frac{10 (12,000)}{109  –  41}  =  1765  lbm/hr

From Eq. 15-10

\eta _{v}  =  \frac{\dot{m}  v_{3}}{PD}                          (15-10)

\eta _{v}  =  \frac{\dot{m}  v_{3}}{PD^{'}}                    or            PD  =  \frac{\dot{m}  v_{3}}{\eta _{v}}

whence

PD  =  \frac{1765  (0.78)}{0.89}  =  1547  ft^{3}/hr

so that

\frac{PD}{cycle}  =  25.8  in.^{3}

The work per pound of refrigerant may be computed from Eq. 15-12:

w =  \frac{n}{n  –  1}  P_{b}  v_{b} \left[\left\lgroup\frac{P_{c}}{P_{b}} \right\rgroup^{(n  –  1)1/n}  –  1\right]                    (15-12)

w =  \frac{1.16}{1.16  –  1}  68  (144)  (0.81) \left[\left\lgroup\frac{300}{68} \right\rgroup^{(1.16  –  1)/1.16}  –  1\right]

w =  13,000  (ft-lbf)/lbm

\dot{W}  =  \dot{m}  w  =  \frac{13,000  (1765)}{778}  =  29,500  Btu/hr

\dot{W}_{sh}  =  \frac{\dot{W}}{\eta _{m}}  =  \frac{29,500}{0.75}  =  39,300  Btu/hr  =  15.4  hp

The heat rejected in the condenser is given by

\dot{q}_{c}  =  \dot{m}  (i_{1}  –  i_{4^{′}})

However, state 4′ has not been completely determined. Since the polytropic exponent was assumed equal to k, the isentropic compression process follows a line of constant entropy on Chart 4. Then t_{c}  =  t_{d}  =  188  F,  t_{4}  ≈  185  F,  and  t_{4^{′}}  =  t_{4}  –  10  =  175  F.  Then  i_{4^{′}}  =  125  Btu/lbm,  so

\dot{q}_{c}  =  1765 (41  –  125)  =  -148,000  Btu/hr

The total power input to the compressor per ton of cooling effect is

\frac{hp}{ton} = \frac{15.4}{10}  =  1.54

15.6
fig15.5
chart4
chart5

Related Answered Questions