Holooly Plus Logo

Question 15.10: Consider the cycle of Fig. 15-31 and the following given dat......

Consider the cycle of Fig. 15-31 and the following given data: condensing pressure, 200 psia; evaporating pressure, 30 psia; generator temperature, 240 F; temperature of vapor leaving dephlegmator, 130 F; and temperature of the strong solution entering the rectifying column, 200 F. The heat exchanger lowers the temperature of the liquid, leaving the condenser at 10 F.

States 1, 3, 4, 7, 8, and 12 are saturated. Pressure drop in components and connecting lines is negligible. The system produces 100 tons of refrigeration. Determine (a) properties P, t, x, and i for all state points of the system, (b) mass flow rate for all parts of the system, (c) power required for the pump, assuming 75 percent mechanical efficiency, (d) system coefficient of performance, and (e) system refrigerating efficiency.

15.31
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Table 15-3 is a tabulation of thermodynamic properties and flow rates for the problem. Figure 15-32 is a schematic i–x diagram showing the state points.

The given data establish all the pressures, and the temperatures t_{3},  t_{4}  and  t_{7} are given. States 3, 4, and 7 are saturated states and can be located on Chart 2 in Appendix E and the concentration and enthalpy values read. States 7 through 12 have the same concentration because no mixing occurs. It is also true that states 1, 2, and 3 have the same concentration and x_{4}  =  x_{5}  =  x_{6} as well. Now states 1, 8, and 12 are saturation states and may be located on Chart 2, making use of the known pressures and concentrations, and i_{1},  i_{8} ,  and  i_{12}   read.  Since  t_{9}  =  t_{8}  –  10   state  9  is  determined  from  t_{9} ,  and  x_{9}   and  i_{9} are read from the chart.

(b) An energy balance between points 8 and 12 in Fig. 15-32 yields

\dot{m}_{8} i_{8}  +  \dot{q}_{e}  =  \dot{m}_{12} i_{12}  =  \dot{m}_{g} i_{12}

\dot{m}_{8}  =  \frac{\dot{q}_{e}}{i_{12}  –  i_{8}}  =  \frac{(100) (200)}{631  –  148}  =  41.4  lbm/min

From Fig. 15-31 it is obvious that \dot{m}_{7}  =  \dot{m}_{8}  =  \dot{m}_{9}  =  \dot{m}_{10}  =  \dot{m}_{11}  =  \dot{m}_{12}.

Mass balance on the absorber gives

\dot{m}_{12}  +  \dot{m}_{6}  =  \dot{m}_{1}

\dot{m}_{12} x_{12}  +  \dot{m}_{6} x_{6}  =  \dot{m}_{1} x_{1}

and

\dot{m}_{6}  =  \dot{m}_{12}  \frac{x_{12}  –  x_{1}}{x_{1}  –  x_{6}}  =  41.4  \frac{0.996  –  0.408}{0.408  –  0.98}

\dot{m}_{6}  =  221.3  lbm/min

\dot{m}_{1}  =  \dot{m}_{12}  +  \dot{m}_{6}  =  221.3  +  41.4  =   262.7  lbm/min

From Fig. 15-32, \dot{m}_{1}  =  \dot{m}_{2}  =  \dot{m}_{3} and  \dot{m}_{4}  =  \dot{m}_{5}  =  \dot{m}_{6}.

(c) The pump work may be expressed as

w_{12}  =  i_{1}  –  i_{2}  =  \frac{(P_{1}  –  P_{2})  \text{v}_{1}}{J}

where J = 778 (ft-lbf)/Btu. The specific volume \text{v}_{1} is an empirically determined quantity and is given in the ASHRAE Handbook, Fundamentals Volume (3). For x_{1}  =  0.408  and  t_{1}  =  79  F,  \text{v}_{1}  =  0.0187  ft^{3}/lbm. Then

w_{12}  =  \frac{144 (30  –  200)  (0.0187)}{778}  =  -0.588  Btu/lbm

\dot{W}_{p}  =  w_{12} \dot{m}_{1}  =  (-0.588)  (262.7)  =  -155  Btu/lbm

i_{2}  =  i_{1}  –  w_{12}  =  -25  –  (-0.588)  =  -24.4  Btu/lbm

The enthalpy, pressure, and concentration at state 2 then establish t_{2}.

The energy balance on the solution heat exchanger yields

\dot{m}_{2} i_{2}  +  \dot{m}_{4} i_{4}  =  \dot{m}_{3}  i_{3}  +  \dot{m}_{5}  i_{5}

\dot{m}_{4}  =  \dot{m}_{5}  and  \dot{m}_{2}  =  \dot{m}_{3}

Then

i_{5}  =  i_{4}  =  \frac{\dot{m}_{2}}{\dot{m}_{4}} (i_{3}  –  i_{2})  =  159  –  \frac{262.7}{221.3} [109  –  (-24.4)]

i_{5}  =  0.64  ≈  0  Btu/lbm

The temperature t_5 is then read from Chart 2 as a function of P_{5},  x_{5},  and  i_{5}.  The  enthalpies  i_{6} =  i_{5} are coincident on Chart 2; however, state 5 is at 200 psia, whereas state 6 is at 30 psia. Since state 6 is subcooled, t_{6}  =  t_{5}. States 9 and 10 are coincident on Chart 2, since the process is one of throttling. Temperature t 10 may be found using the method described in Example 15-8. The energy balance on the evaporator gives

\dot{m}_{10} i_{10}  +  \dot{q}_{e}  =  \dot{m}_{11} i_{11}

\dot{m}_{10}  =  \dot{m}_{11}

i_{11}  =  \frac{\dot{q}_{e}}{\dot{m}_{10}}  +  i_{10}

i_{11}  =  \frac{(200)(100)}{41.4}  +  137  =  620  Btu/lbm

State 11 is a mixture of liquid and vapor, and its temperature is found from Chart 2 to be 40 F.

The pump horsepower requirement may be computed from W_{p} above:

power = \frac{\dot{W}_{p}}{\eta_{m}}  =  \frac{155 (778)}{0.75 (33,000)}  =  4.87  hp

(d) To compute the coefficient of performance it is necessary to establish the generator heat-transfer rate. However, this cannot be done without an analysis of the complete generator–rectifier column dephlegmator unit. To make a reasonable analysis, details of the column design and experimental data are required. For purposes of simplicity it will be assumed that the generator heat-transfer rate is 115 percent of the net heat transfer for the complete rectifying unit. An energy balance gives

\dot{m}_{3} i_{3}  +  \dot{q}_{g}  =  \dot{m}_{4} i_{4}  +  \dot{m}_{7} i_{7}  +  \dot{q}_{d}

\dot{q}_{net}  =  \dot{q}_{g}  –  \dot{q}_{d}  =  \dot{m}_{4} i_{4}  +  \dot{m}_{7} i_{7}  –  \dot{m}_{3} i_{3}

221.3 (159)  +  41.4 (560)  –  262.7  (109)

\dot{q}_{net}  =  33,462  Btu/min

Then

\dot{q}_{g}  =  1.15 \dot{q}_{net}  =  38,480  Btu/min

\dot{q}_{d}  =  38,480  –  33,462  =  5020  Btu/min

Neglecting the pump work,

COP  =  \frac{\dot{q}_{e}}{\dot{q}_{g}}  =  \frac{100(200)}{38,480}  =  0.52

(e) The maximum COP may be calculated from Eq. 15-32. It will be assumed that t_{o}  =  80  F, t_{g}  =  240  F, and  t_{e}  =  0  F were given. Then

(COP)_{max}  =  \frac{T_{e}(T_{g} –  T_{o})}{T_{g} (T_{o}  –  T_{e})}                        (15-32)

(COP)_{max}  =  \frac{460(700  –  540)}{700 (540  –  460)}  =  1.31

and

\eta_{R}  =  \frac{COP}{(COP)_{max}}  =  \frac{0.52}{1.31}  =   0.40

Table 15-3  Properties and Flow Rates for Example 15-10
 

State

P,

psia

t,

F

x,

lbm NH_{3}/lbm

 

i,

Btu/lbm

m,

lbm/min

1 30 79 0.408 -25 262.7
2 200 79 0.408 -25.4 262.7
3 200 200 0.408 109 262.7
4 200 240 0.298 159 221.3
5 200 97 0.298 0  221.3
6 30 97 0.298 0  221.3
7 200 130 0.996 650 41.4
8 200 97 0.996 148 41.4
9 200 86 0.996 137 41.4
10 30 0 0.996 137 41.4
11 30 40 0.996 620 41.4
12 30 57 0.996 631 41.4
15.31
15.32

Related Answered Questions