A 2,400 MW(t) plutonium sodium-cooled fast reactor has the following characteristics:
W = 14,000 kg /s τ = 4.0 s cp=1,250 J/(kg°C)
Mƒcƒ=13.5×106 J/°C Mccp=1.90×106 J/°C Ti=360 °C
Λ=0.5×10−6 s αƒ=−1.8×10−5/°C αc=+0.45×10−5/°C
The reactor undergoes a loss of flow transient with W(t)=W(0)/(1+t/to) where to=5.0s. Employ appropriate software to Eqs. (8.36) through (9.40) to analyze the transient: Make plots of the reactor power, fuel and coolant outlet temperatures for 0 < t < 20 s ( Hint, note that τ~ cannot be approximated by τ in this problem.)
β1 := 0.00021 c1:=β1⋅(λ1⋅Λ)P0 c2:=β2.(λ2⋅Λ)P0
β2 := 0.00142 c3:=β3⋅(λ3⋅Λ)P0 c4:=β4.(λ4⋅Λ)P0
β3 := 0.00128 c3:=β3⋅(λ3⋅Λ)P0 c4:=β4.(λ4⋅Λ)P0
β5 := 0.0007 c5:=β5⋅(λ5⋅Λ)P0 c6:=β6.(λ6⋅Λ)P0
β6 := 0.00027
Sample calculations shown for $0.10 below using the stiff differential equations solver Radau (Mathcad) to obtain the vector Y.
Rf:=MfCfτ=0.296 αf:=−1.8⋅10−5
Tf0:=Rf.P0+Ti=1.071×103 αc:=0.45⋅10−5
C=(2⋅Rf⋅W0⋅Cp)−1C = 0.096
y:=⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛P0c1c2c3c4c5c6Tf0⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
Y := Radau (y , 0 , 100 , 10000 , DD)
n := 0 .. 10000
Below is an algebraic equation to obtain the coolant outlet temperature using the fuel temperature and the inlet temperature.
Yn,9:=Ti+C⋅(1+t0Yn,0)⋅Yn,8