Question 9.13: A 2,400 MW(t) plutonium sodium-cooled fast reactor has the f......

A 2,400 MW(t) plutonium sodium-cooled fast reactor has the following characteristics:

W = 14,000 kg /s                      τ = 4.0 s                                     cp=1,250 J/(kg°C)c_p = 1,250~J/(kg °C)

Mƒcƒ=13.5×106 J/°CM_ƒc_ƒ = 13.5 × 10^6  J/°C        Mccp=1.90×106 J/°CM_cc_p = 1.90 × 10^6  J/°C      Ti=360 °CT_i = 360  °C

Λ=0.5×106 sΛ = 0.5 × 10^{-6}  s                      αƒ=1.8×105/°C α_ƒ = -1.8 × 10 ^{-5} /°C            αc=+0.45×105/°C α_c = +0.45 × 10 ^{-5} /°C

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The reactor undergoes a loss of flow transient with W(t)=W(0)/(1+t/to){ W}(t)={ W}(0)/(1+t/t_{o}) where to=5.0s.t_{o}=5.0\,\mathrm{s}\,. Employ appropriate software to Eqs. (8.36) through (9.40) to analyze the transient: Make plots of the reactor power, fuel and coolant outlet temperatures for 0 < t < 20 s ( Hint, note that τ~\tilde τ cannot be approximated by τ in this problem.)

β1 := 0.00021          c1:=β1P0(λ1Λ)\operatorname{c1}:=\mathbb{\beta 1}\cdot {\frac{\operatorname{P0}}{(\lambda1\cdot\Lambda)}}     c2:=β2.P0(λ2Λ)\mathrm{c}2:=\beta 2.{\frac{\mathrm{P}0}{(\lambda2\cdot\Lambda)}}

β2 := 0.00142            c3:=β3P0(λ3Λ)\operatorname{c3}:=\mathbb{\beta 3}\cdot {\frac{\operatorname{P0}}{(\lambda3\cdot\Lambda)}}    c4:=β4.P0(λ4Λ)\mathrm{c}4:=\beta 4.{\frac{\mathrm{P}0}{(\lambda4\cdot\Lambda)}}

β3 := 0.00128             c3:=β3P0(λ3Λ)\operatorname{c3}:=\mathbb{\beta 3}\cdot {\frac{\operatorname{P0}}{(\lambda3\cdot\Lambda)}}    c4:=β4.P0(λ4Λ)\mathrm{c}4:=\beta 4.{\frac{\mathrm{P}0}{(\lambda4\cdot\Lambda)}}

β5 := 0.0007            c5:=β5P0(λ5Λ)\operatorname{c5}:=\mathbb{\beta 5}\cdot {\frac{\operatorname{P0}}{(\lambda5\cdot\Lambda)}}    c6:=β6.P0(λ6Λ)\mathrm{c}6:=\beta 6.{\frac{\mathrm{P}0}{(\lambda6\cdot\Lambda)}}

β6 := 0.00027

Sample calculations shown for $0.10 below using the stiff differential equations solver Radau (Mathcad) to obtain the vector Y.

Rf:=τMfCf=0.296\mathrm{Rf}:={\frac{\tau}{\mathrm{MfCf}}}=0.296         αf:=1.8105\alpha_{\mathrm f}:=-1.8\cdot10^{-5}

Tf0:=Rf.P0+Ti=1.071×103\mathrm{Tf0}:=\mathrm{Rf.P0}+\mathrm{Ti}=1.071\times10^{3}     αc:=0.45105\alpha_{\mathrm c}:=0.45\cdot 10^{-5}

C=(2RfW0Cp)1C=({2 \cdot \operatorname{Rf}\cdot{{W}}_{0}\cdot{{C}}{{p}})}^{-1}

C = 0.096

y:=(P0c1c2c3c4c5c6Tf0)\mathrm y := \begin{pmatrix}P0 \\ c1 \\ c2 \\ c3 \\ c4 \\ c5 \\c6 \\ \mathrm {Tf0} \end{pmatrix}

 

DD(t,y):=[[αf.(y7Tf0)+αc.C.[(1+tt0).y7Tf0]β]Λy0+λ1y1+λ2y2+λ3y3+λ4y4+λ5y5+λ6y6(β1Λ)y0λ1.y1(β2Λ)y0λ2.y2(β3Λ)y0λ3.y3(β4Λ)y0λ4.y4(β5Λ)y0λ5.y5(β6Λ)y0λ6.y6y0MfCf(y7Tf0)[1+C(1+tt0)]τ]\mathrm{DD(t,y)} := \begin{bmatrix}\frac{\bigg[\alpha_{\mathrm{f}}.\left(\mathrm{y_7} -\mathrm{Tf0}\bigg )+\alpha_{\mathrm{{c}}}.\mathrm{C}.\bigg [ \bigg (1+{\frac{\mathrm{t}}{\mathrm{t}_{0}}}\bigg).\mathrm{y_7} -\mathrm{Tf0}\right]-\beta \bigg ]}{\Lambda} \cdot y_0 + \lambda1 \cdot y_1 + \lambda2 \cdot y_2 + \lambda3 \cdot y_3 + \lambda4 \cdot y_4 + \lambda5 \cdot y_5 + \lambda6 \cdot y_6 \\ \begin{matrix}\left({\frac{\beta1}{\Lambda}}\right)\mathbf{y}_0-\lambda1.\mathrm{y_1} \\ \left({\frac{\beta2}{\Lambda}}\right)\mathbf{y}_0-\lambda2.\mathrm{y_2} \\ \left({\frac{\beta3}{\Lambda}}\right)\mathbf{y}_0-\lambda3.\mathrm{y_3}\\ \left({\frac{\beta4}{\Lambda}}\right)\mathbf{y}_0-\lambda4.\mathrm{y_4} \\ \left({\frac{\beta5}{\Lambda}}\right)\mathbf{y}_0-\lambda5.\mathrm{y_5} \\ \left({\frac{\beta6}{\Lambda}}\right)\mathbf{y}_0-\lambda6.\mathrm{y_6} \\ \frac{y_0}{\mathrm{MfCf}} – \frac{(y_7 – \mathrm{Tf0})\cdot \bigg [1 + C \cdot \bigg (1 + \frac{t}{t_0}\bigg)\bigg]}{\tau}\end{matrix} \end{bmatrix}

Y := Radau (y , 0 , 100 , 10000 , DD)

n := 0 .. 10000

Below is an algebraic equation to obtain the coolant outlet temperature using the fuel temperature and the inlet temperature.

Yn,9:=Ti+C(1+Yn,0t0)Yn,8\mathrm{Y_{n,9}} :=\mathrm{Ti}+\mathrm{C} \cdot\bigg (1 + \frac{Y_{n,0}}{t_0}\bigg) \cdot Y_{n ,8}

 

27 d
28 d
29 d

Related Answered Questions

Question: 9.12

Verified Answer:

β1 := 0.00021          \operatorname{c1}:=\...
Question: 9.11

Verified Answer:

β1 := 0.00021          \operatorname{c1}:=\...
Question: 9.10

Verified Answer:

β1 := 0.00021          \operatorname{c1}:=\...
Question: 9.9

Verified Answer:

a. For negative temperature coefficients, we begin...
Question: 9.8

Verified Answer:

Part a. See solution to problem [8.14] for transie...
Question: 9.7

Verified Answer:

For the simple model of problem [9.4] the reactivi...
Question: 9.6

Verified Answer:

Part A For a bare cylindrical reactor , from Eq. (...
Question: 9.5

Verified Answer:

Part a: As we learned in chapter 4 a liquid cooled...
Question: 9.4

Verified Answer:

Part a: Take the average coolant temperature from ...
Question: 9.3

Verified Answer:

Part a: From Eq. (9.29) the isothermal temperature...