Holooly Plus Logo

Question 21.7: A 360° journal bearing of length 45 mm and L/D = 1 has been ......

A 360° journal bearing of length 45 mm and L/D = 1 has been scored due to dirty oil. The surface roughness of the bearing increases due to dirty oil and causes to increase the viscosity of the oil by 10% due to the working environment. Decide whether the bearing is to be replaced based on the criterion that 5% increase in power loss justifies the replacement. Consider the radial load 900 N, speed= 3000 rpm, radial clearance= 0.02 mm. SAE 10 oil is to be used and the inlet temperature is limited to 60°C.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given L = 45 mm, D = 45 mm, W = 900 N, N* = 3000/60 = 50 rps, C_r=0.02 \mathrm{~mm}

Let the temperature rise be ΔT = 20° C

Average temperature is

T_{\text {average }}=T_{\mathrm{in}}+\frac{\Delta T}{2}=60+10=70^{\circ} \mathrm{C}

For SAE 10 oil, from graph at temperature 70°C, μ = 9.2 mPa·s = 0.0092 Ns/m²

p=\frac{W}{L D}=\frac{900}{45 \times 45}=0.44 \mathrm{~MPa}

Sommerfeld number is

S=\left(\frac{\mu N^*}{p}\right)\left(\frac{r}{C_r}\right)^2=\left(\frac{0.0092 \times 50}{0.44 \times 10^6}\right)\left(\frac{22.5}{0.02}\right)^2=1.33

Corresponding to S = 1.3, the temperature rise variable is determined as follows.

From Table 21.7 corresponding to S = 1.33

CFV = 26.4 and FV = 3.37

\frac{\rho C_p \Delta T}{p}=\frac{f\left(\frac{r}{C_r}\right)}{\left(\frac{Q}{r C_r N^* L}\right)}(4 \pi)=\frac{\mathrm{CFV}}{\mathrm{FV}} \times 4 \pi=\frac{26.4}{3.37} \times 4 \pi=98.44

\Delta T=\frac{98.44 \times p}{\rho C_p}=\frac{98.82 \times 0.44 \times 10^6}{860 \times 1760}=28.62^{\circ} \mathrm{C}

In the second iteration, the average temperature is

T_{\text {average }}=T_{\text {in }}+\frac{\Delta T}{2}=60+\frac{28.62}{2}=74.31^{\circ} \mathrm{C}=75^{\circ} \mathrm{C}

Viscosity corresponding to temperature 75°C is μ = 1.5 mPa·s = 0.0075 Ns/m²

Sommerfeld number is

S=\left(\frac{\mu N^*}{p}\right)\left(\frac{r}{C_r}\right)^2=\left(\frac{0.0075 \times 50}{0.44 \times 10^6}\right)\left(\frac{22.5}{0.02}\right)^2=1.078

Corresponding to S = 1.078 from graph,

FV = 3.4

CFV = 20

\frac{\rho C_p \Delta T}{p}=\frac{\mathrm{CFV}}{\mathrm{FV}} \times 4 \pi=\frac{20}{3.4} \times 4 \pi=73.92

\Delta T=\frac{73.92 \times p}{\rho C_p}=\frac{73.92 \times 0.44 \times 10^6}{860 \times 1760}=21.5^{\circ} \mathrm{C}

In the second iteration, the average temperature is

T_{\text {average }}=T_{\mathrm{in}}+\frac{\Delta T}{2}=60+\frac{21.5}{2}=70.75^{\circ} \mathrm{C}=71^{\circ} \mathrm{C}

which is very close to the first iteration value.

Viscosity corresponding to temperature 71°C is μ= 9.0 mPa·s = 0.009 Ns/m²

Sommerfeld number is 1.3

Hence μ = 9.0 mPa·s = 0.009 Ns/m²

f=2 \pi^2\left(\frac{\mu N^*}{p}\right)\left(\frac{r}{C_r}\right)+0.002=2 \pi^2\left(\frac{0.009 \times 50}{0.44 \times 10^6}\right)\left(\frac{22.5}{0.02}\right)+0.002=0.0247

Power loss

H=f W V=0.0247 \times 900 \times \frac{\pi \times 45 \times 3000}{60,000}=157.135 \mathrm{~W}

If viscosity of the oil increases by 10%,

\mu^{\prime}=1.1 \mu=1.1 \times 9=9.9 \mathrm{~mPa} \cdot \mathrm{s}=0.0099 \mathrm{~Ns} / \mathrm{m}^2

f^{\prime}=2 \pi^2\left(\frac{\mu^{\prime} N^*}{p}\right)\left(\frac{r}{C_r}\right)+0.002=2 \pi^2\left(\frac{0.0099 \times 50}{0.44 \times 10^6}\right)\left(\frac{22.5}{0.02}\right)+0.002=0.02698

The power loss due to increase in viscosity will be

H^{\prime}=f^{\prime} W V=0.02698 \times 900 \times \frac{\pi \times 45 \times 3000}{60,000}=171.64 \mathrm{~W}

\text { Percentage change in power loss }=\frac{171.64-157.135}{171.64} \times 100=8.45 \%

which is greater than the specified percentage, i.e. 5%. So the bearing must be changed.

Attitude \varepsilon \frac{h_0}{C_r} S \phi \frac{r}{C_r} f \frac{Q}{r C_r N^* L} \frac{Q_s}{Q} \frac{p}{p_{\max }}
0 1 00 85 \infty \pi 0
0.1 0.9 1.33 79.5 26.4 3.57 0.15 0.54
0.2 0.8 0.631 74.02 12.8 3.59 0.28 0.529
0.4 0.6 0.264 63.10 5.79 3.99 0.497 0.484
TABLE 21.7 Dimensionless Performance Parameters for 360° Journal Bearing
\frac{L}{D} S \frac{h_0}{C_r} \left(\frac{r}{C_r}\right) f \frac{Q_s}{Q} \frac{Q}{r C_r N^* L} \phi \frac{p_{\max }}{p} \varepsilon
0.25 \infty 1 \infty 0 \pi 89.5 0.00
16.2 0.9 322 0.18 3.45 82.31 0.515 0.10
7.57 0.8 153 0.33 3.78 75.18 0.489 0.20
2.83 0.6 61.1 0.567 4.37 60.86 0.415 0.40
1.07 0.4 26.7 0.746 4.99 46.72 0.334 0.60
0.261 0.2 8.8 0.884 5.6 31.04 0.240 0.80
0.0736 0.1 3.5 0.945 5.91 21.85 0.180 0.90
0.0101 0.03 0.922 0.984 6.12 12.22 1.108 0.97
0 0 0 1 0 0.000 1.00
0.5 \infty 1.00 \infty 0 \pi 88.50 0.00
4.3100 0.90 85.60 0.173 3.43 81.62 0.532 0.10
2.0300 0.80 40.90 0.318 3.72 74.94 0.506 0.20
0.7790 0.60 17.00 0.552 4.29 61.45 0.441 0.40
0.3190 0.40 8.10 0.730 4.85 48.14 0.365 0.60
0.0923 0.20 3.26 0.874 5.41 33.31 0.206 0.80
0.0313 0.10 1.60 0.939 5.69 23.66 0.126 0.90
0.0061 0.03 0.61 0.980 5.88 13.75 0.000 0.97
0 0 0 1.0 0 0 0 1.00
1.0 \infty 1.00 \infty 0 \pi 85.00 0.00
1.33 0.90 26.400 0.150 3.37 79.50 0.54 0.10
0.631 0.80 12.800 0.280 3.59 74.02 0.529 0.20
0.264 0.60 5.790 0.497 3.99 63.10 0.484 0.40
0.121 0.40 3.220 0.680 4.33 50.58 0.415 0.60
0.0446 0.20 1.700 0.842 4.62 36.24 0.313 0.80
0.0188 0.10 1.050 0.919 4.74 26.45 0.247 0.90
0.00474 0.03 0.514 0.973 4.82 15.47 0.152 0.97
0 0.00 0.000 1.000 0 0.00 0 1.00
\infty \infty 1.00 \infty 0 \pi 70.92 0.00
0.24 0.90 4.8 0 3.03 69.1 0.826 0.10
0.123 0.80 2.57 0 2.83 67.26 0.814 0.20
0.0626 0.60 1.52 0 2.26 61.94 0.764 0.40
0.0389 0.40 1.2 0 1.56 54.31 0.667 0.60
0.021 0.20 0.961 0 0.76 42.22 0.495 0.80
0.0115 0.10 0.756 0 0.411 31.62 0.358 0.90
0.03 0 0.97
0 0 0 0 0 0 0 1.00

Related Answered Questions