Holooly Plus Logo

Question 21.15: A full journal bearing operating under a steady load has the......

A full journal bearing operating under a steady load has the following specifications:

journal diameter = 60 mm

bearing length = 60 mm

radial load on bearing = 2.8 kN

journal speed = 1020 rpm

radial clearance = 0.05 mm

viscosity of oil =80 \times 10^{-9} N·s/mm²

density of oil = 860 kg/m³

specific heat of oil = 1.76 kJ/kg·°C

Using Raimondi and Boyd data given in the table, determine

(i) Sommerfeld number

(ii) power loss in friction

(iii) temperature rise if heat is generated entirely carried by oil

(iv) minimum film thickness, and its location.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(i) Sommerfeld number

S=\left(\frac{\mu N^*}{p}\right)\left(\frac{r}{C_r}\right)^2=\left(\frac{80 \times 10^{-9} \times 17}{0.778}\right)\left(\frac{30}{0.05}\right)^2=0.629

N^*=\frac{1020}{60}=17 \mathrm{~rps}

p=\frac{W}{L D}=\frac{2800}{60 \times 60}=0.778 \mathrm{~MPa}

From the table, corresponding to S = 0.629 = 0.63 (This table is given in the paper)

\frac{r}{C_r} f= coefficient of friction variable = CFV = 12.8

f=\frac{12.8 \times 0.05}{30}=0.02133

(ii) Power loss in friction

H_f=f W \times V=f W\left(\frac{\pi D N}{60,000}\right)=0.02133 \times 2800\left(\frac{\pi \times 60 \times 1020}{60,000}\right)=191.41 \mathrm{~W}

(iii) Temperature rise, from the table

\text { Flow variable }=\mathrm{FV}=\frac{Q}{r C_r N^* L}=3.59

\text { Temperature rise variable }=\frac{\rho C_p \Delta T}{p}=\frac{860 \times 1760 \Delta T}{p} \text { and } p \text { must be in } \mathrm{N} / \mathrm{m}^2

From Eq. (21.62)

\frac{\rho C_p \Delta T}{p}=\frac{f\left(\frac{r}{C_r}\right)}{\left(\frac{Q}{r C_r N^* L}\right)}(4 \pi) (21.62)

\frac{\rho C_p \Delta T}{p}=\frac{f\left(\frac{r}{C_r}\right)}{\left(\frac{Q}{r C_r N^* L}\right)}(4 \pi)=\frac{\mathrm{CFV}}{\mathrm{FV}} \times 4 \pi=\frac{12.8}{3.59} \times 4 \pi=44.81

\Delta T=\frac{44.81 \times p}{\rho C_p}=\frac{44.81 \times 0.778 \times 10^6}{860 \times 1760}=23.03^{\circ} \mathrm{C}

(iv) Minimum film thickness

\frac{h_0}{C_r}=0.8

Minimum oil film thickness is

h_0=0.8 \times 0.05=0.04 \mathrm{~mm}

Location is \phi=74.02^{\circ}

Attitude \varepsilon \frac{h_0}{C_r} S \phi \frac{r}{C_r} f \frac{Q}{r C_r N^* L} \frac{Q_s}{Q} \frac{p}{p_{\max }}
0 1 00 85 π 0
0.1 0.9 1.33 79.5 26.4 3.37 0.15 0.54
0.2 0.8 0.63 74.02 12.8 3.59 0.28 0.529
0.4 0.6 0.264 63.10 5.79 3.99 0.497 0.484

Related Answered Questions