Holooly Plus Logo

Question 21.11: A full journal bearing of 100 mm length and 100 mm diameter ......

A full journal bearing of 100 mm length and 100 mm diameter supports a radial load of 6 kN. The speed of the shaft is 750 rpm. The surface temperature of the bearing is limited to 62°C when the ambient temperature is 27°C. Determine a suitable oil if (i) the bearing is well ventilated and no additional cooling is required (ii) if the bearing requires additional cooling facility for which a fan is used. Take D / C_d=1000

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(i) From the McKee equation, the coefficient of friction is given as

f=2 \pi^2\left(\frac{\mu N^*}{p}\right)\left(\frac{r}{C_r}\right)+0.002=2 \pi^2\left(\frac{12.5 \mu}{0.6 \times 10^6}\right)(1000)+0.002=0.411 \mu+0.002

where

p=\frac{W}{L D}=\frac{6000}{100 \times 100}=0.6 \mathrm{~N} / \mathrm{mm}^2

N^*=750 / 60=12.5 \mathrm{~rps}

Heat generated is given by

H_g=\frac{(f W)(2 \pi N r)}{60}=\frac{(f W)(\pi N D)}{60}=\frac{(0.411 \mu+0.002) \times 6000 \times\left(\pi \times 750 \times \frac{100}{1000}\right)}{60}

=9683.95 \mu+47.12 (21.75)

Heat dissipated is given by

H_d=\rho Q C_p \Delta T=0.86 Q \times 1.76 \times(62-27)=52.976 Q (21.76)

\left(\frac{Q}{r C_r N^* L}\right) is the flow variable (FV)

\left(\frac{Q}{r C_r N^* L}\right)=\mathrm{FV}

Q=r C_r N^* L(\mathrm{FV}) and from Eq. (21.76) we can write

H_d=52.976 \times r C_r N^* L(\mathrm{FV})=52.976 \times\left(\frac{50}{1000}\right)\left(\frac{50}{1000}\right)\left(\frac{750}{60}\right)\left(\frac{100}{1000}\right)(\mathrm{FV})=0.166(\mathrm{FV}) (21.77)

Equating Eqs. (21.75) and (21.77)

9683.95 \mu+47.12=0.166(\mathrm{FV})

\mathrm{FV}=58337.1 \mu+283.9 (21.78)

Assuming density of oil as 860 \mathrm{kg} / \mathrm{m}^3 \text { and } C_p=1760 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}

\frac{\rho C_p \Delta T}{p}=\frac{\mathrm{CFV}}{\mathrm{FV}} \times 4 \pi=\frac{0.86 \times 1.76 \times(62-27)}{0.6}=88.29

\frac{\mathrm{CFV}}{\mathrm{FV}}=\frac{88.29}{4 \pi}=7.026 (21.79)

f\left(\frac{r}{C_r}\right)=\mathrm{CFV}=(0.414 \mu+0.002)\left(\frac{50}{0.05}\right) \text { taking } \frac{r}{C_r}=1000

\text { CFV }=1000 \times(0.414 \mu+0.002)

From Eq. (21.79) we can have

\mathrm{FV}=\frac{\mathrm{CFV}}{7.026}=\frac{1000 \times(0.414 \mu+0.002)}{7.026}

\mathrm{FV}=142.33 \times(0.414 \mu+0.002) (21.80)

Equating Eqs. (21.78) and (21.80)

142.33 \times(0.414 \mu+0.002)=58337.1 \mu+283.9

Solving, we get

58337.1 \mu-58.925 \mu=283.9-0.28466

\mu=\frac{283.615}{58278.175}=4.867 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}

Alternate method

(i) Without ventilation condition

The rough estimate of heat dissipation can be obtained as

H_d=k A \Delta T

where k is the overall heat transfer coefficient

k = 140 to 420 W/m²/°C without ventilation

= 490 to 1400 W/m²/°C with ventilation.

Taking k = 200 W /m²/°C

H_d=k A \Delta T=200 \times 0.1 \times 0.1 \times 35=70 \mathrm{~W}

Equating with Eq. (21.75)

9683.95 \mu+47.12=70

\mu=\frac{22.88}{9683.95}=2.36 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}

(ii) with well ventilation

Assume k = 600 W/m²/°C

H_d=k A \Delta T=600 \times 0.1 \times 0.1 \times 35=210 \mathrm{~W}

Equating with Eq. (21.75)

9683.95 \mu+47.12=210

\mu=\frac{162.88}{9683.95}=0.0168 \mathrm{~kg} / \mathrm{ms}

These are approximate methods as the exact heat transfer coefficient is unknown and assumed from a range of the values.

Related Answered Questions