Holooly Plus Logo

Question 20.13: A centrifugal pump is used to deliver water and it has an im......

A centrifugal pump is used to deliver water and it has an impeller of external diameter 600 mm and internal diameter 200 mm. The width of the impeller is 100 mm at inlet and 40 mm at outlet. The vane angle at inlet and outlet are 15° and 25° respectively. The impeller rotates at 1500 rpm. Neglecting losses and vane thickness, determine (a) the discharge for shockless radial entry, (b) the head developed, (c) the power required to drive the pump if the overall efficiency is 70% and (d) the pressure rise through the impeller.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:

External diameter of impeller            D_2=600 \mathrm{~mm}=0.6 \mathrm{~m}

Internal diameter of impeller              D_1=200 \mathrm{~mm}=0.2 \mathrm{~m}

Width at outlet                                        B_2=40 \mathrm{~mm}=0.04 \mathrm{~m}

Width at inlet                                        B_1=100 \mathrm{~mm}=0.1 \mathrm{~m}

Vane angle at inlet                                \beta_1=15^{\circ}

Vane angle at outlet                              \beta_2=25^{\circ}

Speed of pump                                      N =1500 rpm

Head                                                        H = 30 m

Overall efficiency                                  \eta_o=0.70

(a) Tangential velocity of impeller at inlet is given by

U_1=\frac{\pi D_1 N}{60}=\frac{\pi \times 0.2 \times 1500}{60}=15.71 \mathrm{~m} / \mathrm{s}

Tangential velocity of impeller at outlet is given by

U_2=\frac{\pi D_2 N}{60}=\frac{\pi \times 0.6 \times 1500}{60}=47.12 \mathrm{~m} / \mathrm{s}

The inlet and outlet velocity triangles are shown in Fig. 20.17.

From the inlet velocity triangle, we have

or    V_{f 1}=U_1 \tan \beta_1

=15.71 \tan 15^{\circ}=4.21 \mathrm{~m} / \mathrm{s}

The discharge is given by Eq. (20.3) as

{Q}=\pi D_{1}B_{1}{V}_{f1}=\pi D_{2}B_{2}{V}_{f2}              (20.3)

Q=\pi D_1 B_1 V_{f 1}

=\pi \times 0.2 \times 0.1 \times 4.21=0.265 \mathrm{~m}^3 / \mathrm{s}

(b) The velocity of flow at the impeller outlet is

V_{f 2}=\frac{Q}{\pi D_2 B_2}=\frac{0.265}{\pi \times 0.6 \times 0.04}=3.51 \mathrm{~m} / \mathrm{s}

From the outlet velocity triangle, we have

V_{w 2}=U_2-V_{f 2} \cot \beta_2

=47.12-3.51 \cot 25^{\circ}=39.59 \mathrm{~m} / \mathrm{s}

The head developed is found to be

H=\frac{V_{w 2} U_2}{g}

=\frac{39.59 \times 47.12}{9.81}=190.16 \mathrm{~m}

(c) The power required to drive the pump is

=\frac{\rho Q g H}{\eta_o}

=\frac{1000 \times 0.265 \times 9.81 \times 190.16}{0.7}=706.21 \times 10^3 \mathrm{~W}=706.21 \mathrm{~kW}

(d) Applying energy equation between inlet and outlet of the impeller, we have

\frac{p_1}{\rho g}+\frac{V_1^2}{2 g}+z_1=\frac{p_2}{\rho g}+\frac{V_2^2}{2 g}+z_2-\frac{V_{w 2} U_2}{g}

or            \frac{p_2}{\rho g}-\frac{p_1}{\rho g}=\frac{V_1^2}{2 g}-\frac{V_2^2}{2 g}+\frac{V_{w 2} U_2}{g}         \left[\because z_1=z_2\right]

Now,                V_1=V_{f 1}=4.21 \mathrm{~m} / \mathrm{s}

From the outlet velocity triangle, we have

V_2^2=V_{w2}^2+V_{f2}^2

=3.51^2+39.59^2

or                  V_2=39.75 \mathrm{~m} / \mathrm{s}

The pressure rise is

\frac{p_2}{\rho g}-\frac{p_1}{\rho g}=\frac{V_1^2}{2 g}-\frac{V_2^2}{2 g}+\frac{V_{w 2} U_2}{g}

=\frac{4.21^2}{2 \times 9.81}-\frac{39.75^2}{2 \times 9.81}+\frac{39.59 \times 47.12}{9.81}

=110.53 m

777777777

Related Answered Questions

Question: 20.18

Verified Answer:

Given data:  Speed of pump               N = 1000 ...