Holooly Plus Logo

Question 20.20: A centrifugal pump rotating at 1800 rpm delivers 0.4 m³/s at......

A centrifugal pump rotating at 1800 rpm delivers 0.4 m³/s at a head of 16 m. Calculate the specific speed of the pump and the power input. Assume overall efficiency of the pump as 0.70. If this pump were to operate at 900 rpm what would be the head, discharge and power required for homologous conditions? Assume overall efficiency unchanged at new rpm.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:

Speed of pump                                      N_1=1800 \mathrm{~rpm}

Discharge                                                Q_1=0.4 \mathrm{~m}^3 / \mathrm{s}

Head                                                        H_1=16 \mathrm{~m}

Overall efficiency                                \eta_o=0.70

The power input to the pump is given by

P_1=\frac{\rho Q_1 g H_1}{\eta_o}

=\frac{1000 \times 0.4 \times 9.81 \times 16}{0.7}=89.69 \times 10^3 \mathrm{~W}=89.69 \mathrm{~kW}

The specific speed of the pump is given by Eq. (20.30) as

N_{S P}={\frac{N{\sqrt{Q}}}{(H)^{3/4}}}        (20.30)

N_s=\frac{N_1 \sqrt{Q_1}}{H_1^{3 / 4}}

=\frac{1800 \sqrt{0.4}}{(16)^{3 / 4}}=142.3 \text { units }

Let Q_2, H_2 \text { and } P_2 be the discharge, head and power required for homologous condition, respectively. Using Eq. (20.31), we have

\left(\frac{Q}{N D^3}\right)_m=\left(\frac{Q}{N D^3}\right)_p     (20.31)

\frac{Q_1}{N_1}=\frac{Q_2}{N_2}                     \left[\because D_1=D_2\right]

or                                  Q_2=Q_1 \frac{N_2}{N_1}=0.4 \times \frac{900}{1800}=0.2 \mathrm{~m}^3 / \mathrm{s}

Using Eq. (20.32), we obtain

\left({\frac{g H}{N^{2}D^{2}}}\right)_{m}=\left({\frac{g H}{N^{2}D^{2}}}\right)_{p}            (20.32)

\frac{H_1}{N_1^2}=\frac{H_2}{N_2^2}

or                              H_2=H_1 \frac{N_2^2}{N_1^2}=16 \times \frac{900^2}{1800^2}=4 \mathrm{~m}

Using Eq. (20.33), one can write

\left({\frac{P}{\rho N^{3}D^{5}}}\right)_{m}=\left({\frac{P}{\rho N^{3}D^{5}}}\right)_{p}    (20.33)

\frac{P_1}{N_1^3}=\frac{P_2}{N_2^3}

or                  P_2=P_1 \frac{N_2^3}{N_1^3}=89.69 \times \frac{900^3}{1800^3}=11.21 \mathrm{~kW}

Related Answered Questions

Question: 20.18

Verified Answer:

Given data:  Speed of pump               N = 1000 ...