A consultant is asked to evaluate some bolt failures found during testing. He is informed that the yield point of a high-strength steel (HSS) bolt is known to be normally distributed with a variance of 1.6. He decides to test the hypothesis that σ^{2} = 1.6 against the alternative that σ^{2} ≠ 1.6. He manages to “pull” a random sample of 5 of these fasteners for testing, and he finds that they have a standard deviation S = 2.1. He decides to use a 0.01 level of significance for testing.
He utilizes the following approach:
1. H_{0} :\sigma^{2}=H_{a} :\sigma^{2} ≠1.6(two-tailed)
2. \alpha= 0.01, n = 5
3.\chi ^{2}=\left(n-1\right)S^{2}/ \left(\sigma _{0}\right)^{2} where S = 2.1 and \sigma^{2} _{0}=1.6
which yields : \chi ^{2}=\frac{\left(n-1\right)5^{2}}{\sigma^{2} _{0}} = \left(5-1\right)\frac{\left(2.1\right)^{2} }{\left(1.6\right)^{2} } =6.89
4. From Table 4.6
For \alpha /2=\frac{0.01}{2}=0.005 ∂=n-1 =5-1 =4
\left(\chi_{\left(\alpha/2\right) } \right)^{2} =\chi ^{2}_{0.005}=0.207 \\ \left(\chi_{\left(1-\alpha/2\right) } \right)^{2} =\chi ^{2}_{0.995}=14.865. Analysis
Therefore, since\chi^{2} = 6.89, which is greater than \chi ^{2}_{0.005}= 0.207 and less than \chi ^{2}_{0.995}=14.86 , the consultant concludes that at a significance level of 0.01 the null hypothesis is accepted (accept H_{0}) and he, therefore, concludes that the bolt variance is σ^{2} = 1.6.
TABLE 4.6 | ||||||||||
Critical Values of the Chi-Square Distribution [9] Values of 2 P Corresponding to P | ||||||||||
![]() |
||||||||||
Df | χ^{2}_{.005} | χ^{2}_{.01} | χ^{2}_{.025} | χ^{2}_{.05} | χ^{2}_{.10} | χ^{2}_{.90} | χ^{2}_{.95} | χ^{2}_{.975} | χ^{2}_{.99} | χ^{2}_{.995} |
1 | .000039 | .00016 | .00098 | .0039 | .0158 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 |
2 | .0100 | .0201 | .0506 | .1026 | .2107 | 4.61 | 5.99 | 7.38 | 9.21 | 10.60 |
3 | .0717 | .115 | .216 | .352 | .584 | 6.25 | 7.81 | 9.35 | 11.34 | 12.84 |
4 | .207 | .297 | .484 | .711 | 1.064 | 7.78 | 9.49 | 11.14 | 13.28 | 14.86 |
5 | .412 | .554 | .831 | 1.15 | 1.61 | 9.24 | 11.07 | 12.83 | 15.09 | 16.75 |
6 | .676 | .872 | 1.24 | 1.64 | 2.20 | 10.64 | 12.59 | 14.45 | 16.81 | 18.55 |
7 | .989 | 1.24 | 1.69 | 2.17 | 2.83 | 12.02 | 14.07 | 16.01 | 18.48 | 20.28 |
8 | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 13.36 | 15.51 | 17.53 | 20.09 | 21.96 |
9 | 1.73 | 2.09 | 2.70 | 3.33 | 4.17 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59 |
10 | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 15.99 | 18.31 | 20.48 | 23.21 | 25.19 |
11 | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 17.28 | 19.68 | 21.92 | 24.73 | 26.76 |
12 | 3.07 | 3.57 | 4.4 | 5.23 | 6.30 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30 |
13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82 |
14 | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32 |
15 | 4.60 | 5.23 | 6.26 | 7.26 | 8.55 | 22.31 | 25.00 | 27.49 | 30.58 | 32.8 |
16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 23.54 | 26.30 | 28.85 | 32.00 | 34.27 |
18 | 6.26 | 7.01 | 8.23 | 9.39 | 10.86 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16 |
20 | 7.43 | 8.26 | 9.59 | 10.85 | 12.44 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00 |
24 | 9.89 | 10.86 | 12.40 | 13.85 | 15.66 | 33.2 | 36.42 | 39.36 | 42.98 | 45.56 |
30 | 13.79 | 14.95 | 16.79 | 18.49 | 20.6 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67 |
40 | 20.71 | 22.16 | 24.43 | 25.51 | 29.05 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77 |
60 | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95 |
120 | 83.85 | 86.92 | 91.58 | 95.70 | 100.62 | 40.23 | 146.57 | 152.21 | 158.95 | 163.64 |