Holooly Plus Logo

Question 8.7: A FET transcharacteristic can be approximated as a third−ord......

A FET transcharacteristic can be approximated as a third-order polynomial as:

i_D(t)=a_1 e_G+a_2 e_G^2+a_3 e_G^3 .

Derive the corresponding descriptive function model around a carrier frequency f_0 and show that the model correctly predicts the in-band third-order intermodulation products and also the two-tone output current at the fundamental.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since the starting model is memoriless, the carrier frequency is immaterial. Starting from a single-tone test where e_G=E_G \cos \theta, we have already derived the expression of the fundamental output current as:

i_{D, ib }(t)=I_{D, ib } \cos \theta=\left(a_1+\frac{3}{4} a_3 E_G^2\right) E_G \cos \theta,

where i_{D, \text {ib }} denotes the frequency components of the output current close to the carrier, i.e.:

I_{D, ib }=F_P\left(E_G\right) E_G, \quad F_P=a_1+\frac{3}{4} a_3 E_G^2 .

Notice that, due again to the memoriless nature of the input-output relationship, the phasor is real and there is no phase delay between the input and the output. Moreover, the descriptive function does not include the second-order term of the power series, but only the odd-order terms. Let us now introduce a two-tone input signal, e_G(t)=E_G \cos \theta_1+E_G \cos \theta_2. We can write:

e_G(t)=\operatorname{Re}\left[E_G e ^{ \text{j} \theta_1}+E_G e ^{ \text{j} \theta_2}\right]=\operatorname{Re}\left[E_G\left(1+ e ^{ \text{j} \Delta \theta}\right) e ^{ \text{j} \theta_1}\right] ,

with \Delta \theta=\theta_2-\theta_1, so that:

\begin{aligned} I_{D, ib }(t) & =F_P\left(E_G\left|1+ e ^{ \text{j} \Delta \theta}\right|\right) E_G\left(1+ e ^{ \text{j} \Delta \theta}\right) \\ & =a_1 E_G\left(1+ e ^{ \text{j} \Delta \theta}\right)+\frac{3}{4} a_3\left|1+ e ^{ \text{j} \Delta \theta}\right|^2 E_G^3\left(1+ e ^{ \text{j} \Delta \theta}\right) . \end{aligned}

Taking into account that:

\left|1+ e ^{ \text{j} \Delta \theta}\right|^2=\left(1+ e ^{ \text{j} \Delta \theta}\right)\left(1+ e ^{- \text{j} \Delta \theta}\right)=2+ e ^{ \text{j} \Delta \theta}+ e ^{- \text{j} \Delta \theta},

we obtain:

\begin{aligned} I_{D, ib }(t)= & a_1 E_G\left(1+ e ^{ \text{j} \Delta \theta}\right)+\frac{3}{4} a_3\left|1+ e ^{ \text{j} \Delta \theta}\right|^2 E_G^3\left(1+ e ^{ \text{j} \Delta \theta}\right) \\ = & a_1 E_G\left(1+ e ^{ \text{j} \Delta \theta}\right)+\frac{3}{4} a_3\left(2+ e ^{ \text{j} \Delta \theta}+ e ^{- \text{j} \Delta \theta}\right)\left(1+ e ^{ \text{j} \Delta \theta}\right) E_G^3 \\ = & \left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G+\left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G e^{ \text{j} \Delta \theta} \\ & +\frac{3}{4} a_3 E_G^3 e^{- \text{j} \Delta \theta}+\frac{3}{4} a_3 E_G^3 e^{ \text{j} 2 \Delta \theta} .\end{aligned}

Recovering the time-domain output current (remember that \theta=\omega t):

i_{D, ib }(t)=\operatorname{Re}\left[I_{D, ib }(t) e ^{ \text{j} \theta_1}\right] ,

we have:

\begin{aligned} I_{D, ib }(t) e ^{ \text{j} \theta_1}= & \left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G e ^{ \text{j} \theta_1}+\left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G e ^{ \text{j} \theta_2} \\ & +\frac{3}{4} a_3 E_G^3 e^{ \text{j} \left(\theta_1-\Delta \theta\right)}+\frac{3}{4} a_3 E_G^3 e^{ \text{j} \left(\theta_2+\Delta \theta\right)}. \end{aligned}

Thus:

\begin{aligned} i_{D, ib }(t)= & \left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G \cos \theta_1+\left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G \cos \theta_2 \\ & +\frac{3}{4} a_3 E_G^3 \cos \left(2 \theta_1-\theta_2\right)+\frac{3}{4} a_3 E_G^3 \cos \left(2 \theta_2-\theta_1\right), \end{aligned}

i.e., comparing with (8.12),

i_D(t)=I_D^{(1)} \cos \theta_1+I_D^{(2)} \cos \theta_2+I_D^{(+)} \cos \left(2 \theta_2-\theta_1\right)+I_D^{(-)} \cos \left(2 \theta_1-\theta_2\right) \hspace{30 pt} \text{(8.12)}

we have the same result as in (8.13).

\begin{aligned}I_D^{(1)} & =\left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G \;\;\;\;\;\hspace{30 pt} \text{(8.13a)}\\ I_D^{(2)} & =\left(a_1+\frac{9}{4} a_3 E_G^2\right) E_G \hspace{30 pt}\;\;\;\;\;\text{(8.13b)}\\ I_D^{(+)} & =\frac{3}{4} a_3 E_G^3 \hspace{30 pt}\hspace{30 pt}\;\;\hspace{30 pt} \text{(8.13c)}\\ I_D^{(-)} & =\frac{3}{4} a_3 E_G^3,\hspace{30 pt}\hspace{30 pt}\hspace{30 pt} \text{(8.13d)} \end{aligned}

Related Answered Questions

Question: 8.4

Verified Answer:

In class A power amplifiers, a tuned load is used ...
Question: 8.1

Verified Answer:

In a sinusoidal signal of peak value x_p[/l...