Holooly Plus Logo

Question 9.6: A lossless line of characteristic resistance Ro is terminate......

A lossless line of characteristic resistance R_{o} is terminated in a load impedance Z_{L}. The waves on the line have a phase constant β. At a distance \ell ^{\prime} from the load toward the generator, the input impedance looking toward the load is defined as Z_{in} (\ell^{\prime }) \equiv V (\ell^{\prime }) / I(\ell^{\prime }) , and the reflection coefficient is defined as \Gamma (\ell^{\prime }) = V^{-} (\ell^{\prime }) / V^{+}(\ell^{\prime }). Find

(a) expression for \Gamma (\ell^{\prime }),

(b), \Gamma (\ell^{\prime }) at the locations of V_{max} and V_{min}, and

(c) Z_{in} (\ell^{\prime })  at the locations of V_{max} and V_{min}.

(d) Show that S = Z_{in} (\ell^{\prime }) / R_{o} at the location of V_{max}.

9.8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) At a point with z = z_{1} on the line, or at a distance \ell^{\prime } = \ell – z_{1} from the load, the forward voltage wave is given by the first term on the right-hand side of Eq. (9-46):

V (z) = V^{+}_{o} e^{- j \beta z} \left[ 1 + \left|\Gamma \right| e^{j (\phi – 2\beta \ell^{\prime })} \right]                                        (9 – 46)

V^{+} (z_{1}) = V^{+}_{o} e^{- j \beta z_{1}}

At the same point on the line, the backward voltage wave is given by the second term on the right-hand side of Eq. (9-46):

V^{-} (z_{1}) = V^{+}_{o} e^{- j \beta z_{1}} \left|\Gamma \right| e ^{j(\phi – 2\beta \ell^{\prime })}

The reflection coefficient at a distance \ell^{\prime } from the load is therefore

\Gamma (\ell^{\prime }) = \frac{ V^{-} (z_{1})}{ V^{+} (z_{1})} = \left|\Gamma \right| e ^{j(\phi – 2\beta \ell^{\prime })}                                             (9-54)

(b) From Eq. (9-46), we have a voltage maximum if the relation e ^{j(\phi – 2\beta \ell^{\prime })} = 1 is satisfied, and a voltage minimum if e ^{j(\phi – 2\beta \ell^{\prime })} = -1. Therefore, from Eq. (9- 54), we obtain

\Gamma (\ell^{\prime }) = \left|\Gamma \right|                           : at  the   location  of  V_{max}                                        (9-55a) \\ \Gamma (\ell^{\prime }) = – \left|\Gamma \right|                            : at  the  location  of  V_{min}                                       (9-55b)

We note that \Gamma (\ell^{\prime })  is purely real at the locations of V_{max} and V_{min}.

(c) From Eq. (9-43), the input impedance at a distance \ell^{\prime }  from the load is written as

\boxed{V (z) = V^{+}_{o} e^{- \gamma z}\left[1 + \Gamma e^{- 2 \gamma \ell^{\prime }}\right] }                                      [V]                                          (9-43a)\\ \boxed{I(z) = I^{+}_{o} e^{- \gamma z}\left[1  –  \Gamma e^{- 2 \gamma \ell^{\prime }}\right]}                                     [A]                                         (9-43b) \\ \boxed{Z_{in}(\ell^{\prime }) = \frac{V^{+}_{o} e^{- j \beta z}\left[1 + \Gamma e^{- j 2 \beta \ell^{\prime }}\right] }{I^{+}_{o} e^{- j \beta z}\left[1  –  \Gamma e^{- j 2 \beta \ell^{\prime }}\right]} = R_{o} \frac{\left[1 + \left|\Gamma \right| e^{j \phi } e^{- j 2 \beta \ell^{\prime }}\right] }{\left[1  –  \left|\Gamma \right| e^{j \phi } e^{- j 2 \beta \ell^{\prime }}\right] } }                    (9-56)

were we used γ = jβ and Z_{o} = R_{o}.

Noting that e ^{j(\phi – 2\beta \ell^{\prime })} = 1 for the voltage maximum and e ^{j(\phi – 2\beta \ell^{\prime })} = -1 for the voltage minimum, from Eq. (9-56) we obtain

Z_{in} (\ell^{\prime })= R_{o}\frac{1 + \left|\Gamma \right| }{1 – \left|\Gamma \right|}                                        : at  the  location  of  V_{max}                                       (9-57a) \\ Z_{in} (\ell^{\prime })= R_{o}\frac{1 – \left|\Gamma \right| }{1 + \left|\Gamma \right|}                                       : at  the  location  of   V_{min}                                       (9-57b)

We note that Z_{in} (\ell^{\prime }) is purely real at the locations of V_{max} and V_{min}.

(d) At the location of V_{max}, dividing both sides of Eq. (9-57a) by R_{o}we obtain

\frac{Z_{in} (\ell^{\prime })}{ R_{o}} = \frac{1 + \left|\Gamma \right| }{1 – \left|\Gamma \right|} = S                                                 (9-58)

Related Answered Questions