Holooly Plus Logo

Question 9.7: A lossless transmission line is known to be shorter than 10[......

A lossless transmission line is known to be shorter than 10[m] in length. If it is open-circuited, the input impedance is given by Z^{o}_{in} = – j 81[\Omega ]. If shortcircuited, the input impedance is given by Z^{s}_{in} = j 144[\Omega ], and the first voltage maximum is observed at a distance 2.5[m] from the shorted end. Find

(a) R_{o}, (b) β, and (c) \ell .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The characteristic impedance is, from Eq. (9-61a),

R_{o}= \sqrt{Z^{s}_{in} Z^{o}_{in}} .                                  [Ω]                                                          (9-61a)

R_{o}= \sqrt{Z^{s}_{in} Z^{o}_{in}} = \sqrt{(j144)(- j 81)} = 108[\Omega ].

(b) From Eq. (9-42), the reflection coefficient of a short circuit ( Z_{L} = 0  ) is obtained as \Gamma = -1 = e^{j\pi }. Thus we obtain Φ = π.

\boxed{\Gamma = \frac{Z_{L} – Z_{o}}{Z_{L} + Z_{o}} \equiv \left|\Gamma \right| e^{j\phi }}                                                 (9-42)

Substituting Φ = π , m = 0 , and \ell^{\prime }_{max} = 2.5 [m] into Eq. (9-47a), we get

\boxed{\ell^{\prime }_{max} = \frac{1}{2\beta } (\phi + 2 m\pi )}                                      (m = 0,1,2..)                                         (9-47a)

β = 0.2 π.                                                                                                       (9-62)

(c) From Eq. (9-61b) we get

\beta \ell = \tan ^{-1} \sqrt{\left|\frac{Z^{s}_{in}}{Z^{o}_{in}}\right| } + n \pi                          n = ( 0,1,2..)                                  (9-61b)

\beta \ell = \tan ^{-1} \sqrt{144/81} + n\pi = 0.93 +n\pi                                         (9-63)

Inserting Eq. (9-62) into Eq. (9-63), the line length is
\ell = (0.93 + n π)/(0.2π )

= 1.48[m], 6.48[m], 11.48[m],…

The length \ell  should be longer than 2.5[m] , but shorter than 10[m] .

Therefore, we have \ell = 6.48[m].

Related Answered Questions