Holooly Plus Logo

Question 9.5: With reference to the transmission line given in Example 9-4......

With reference to the transmission line given in Example 9-4, find

(a) reflection coefficient,

(b) expression for the total voltage on the line,

(c) power dissipated at the load, and

(d) total power dissipated in the line.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The reflection coefficient is, from Eq. (9-42),

\boxed{ \Gamma = \frac{Z_{L} – Z_{o} }{Z_{L} + Z_{o} } ≡\left|\Gamma \right| e^{j \phi }}                    (9-42)

\Gamma = \frac{Z_{L} – Z_{o} }{Z_{L} + Z_{o} } = \frac{(10 + j 40) – (110 + j 80 )}{(10 + j 40) + (110 + j 80 )} = 0.635 e^{j 2.74}

(b) The input voltage is obtained from Eq. (9-43a) by substituting z = 0 and \ell ^{\prime } = 2[m]:

V(z) = V^{+}_{o} e^{\gamma z}[1 + \Gamma e^ { – 2\gamma \ell^{\prime } }]                                        [V]                     (9-43a)

V_{in}(z = 0 , \ell^{\prime } = 2 ) = V^{+}_{o} [1 + \Gamma e^ { – 4\gamma }] = V^{+}_{o} [1 +0.635 e^{j 2.74} e^{ – 0.6 – j14 }] \\ \quad \quad \quad \quad \quad \quad \quad = V^{+}_{o} ( 1.0911 + j 0.336) [V]

Equating this with Eq. (9-40c), the amplitude of the forward wave is

V_{in} = Z_{in} I_{in} = (45.86 + j 153.9)(0.0583 – j 0.0936) \\ \quad \quad = 17.08 +j 4.68 [V]                          (9-40c)

V^{+}_{o} = 15.51 e^{ – j0.031 } [V]

Total voltage on the line is therefore

V(z) = V^{+}_{o} e^{ – \gamma z}[1 + \Gamma e^{ – 2\gamma \ell^{\prime } }] \\ \quad \quad = 15.51 e^{ – j 0.031 } e^{ – (0.15 + j 3.5)z} [1 + 0.635 e^{j 2.74} e^{ – (0.3 + j7.0) \ell^{\prime }}] [V]              (9- 53)

(c) By substituting z = 2[m] and \ell ^{\prime } =0 into Eq. (9-53), the load voltage is

V_{L} = 15.51 e^{ – j 0.031 } e^{ – (0.3 + j 7.0)} [1 + 0.635 e^{j 2.74}] = 5.56 e^{- j 0.210} [V]

Time-average power dissipated at the load is therefore

\left\langle\mathscr{P}_{L}\right\rangle = \frac{1}{2} Re\left[ V_{L}\left\lgroup\frac{V_{L}}{Z_{L}} \right\rgroup^{*}\right] = \frac{1}{2} Re \left[\frac{(5.56)^{2}}{10 – j 40} \right] = 90.9 [ mW]

(d) By using the input voltage and current given in Eqs. (9-40b) and (9-40c), we compute the total power dissipated in the line and the load:

I_{in} = \frac{V_{g}}{Z_{g} + Z_{in}} = \frac{20}{50 + 45.86 + j 153.9} \\ \quad = 0.0583 – j 0.0936 [A]               (9-40b)

\left\langle\mathscr{P}_{in}\right\rangle = \frac{1}{2} Re [V_{in}I^{*}_{in}] = \frac{1}{2} Re [ (17.08 + j 4.68) (0.0583 + j 0.0936)] \\ \quad \quad = 279 [ mW]

Thus the power dissipated in the line is

279 – 90.9 = 188.1[mW]

Related Answered Questions