Holooly Plus Logo

Question 4.AE.2: A p=2 pole, f=60 Hz synchronous machine (generator, alternat......

A p=2 pole, f=60 Hz synchronous machine (generator, alternator, motor) is rated S_{rat}=16 MVA at a lagging (generating reference system) displacement power factor cos φ=0.8, a line-to-line terminal voltage of V_{L-L}=13,800 V, and a (one-sided) air-gap length of g=0.0127 m. The stator has 48 slots and has a three-phase double-layer, 60° phase-belt winding with 48 armature coils having a short pitch of 2/3. Each coil consists of one turn N_{coil}=1. Sixteen stator coils are connected in series, that is, the number of series turns per phase of the stator (st) are N_{\text{st phase}}=16 (see Fig. E4.2.1). The maximum air-gap flux density at no load (stator current I_{st} phase=0) is B_{\text{st max}}=1 T
.There are eight field coils per pole (see Fig. E4.2.2) and they are pitched 44-60-76- 92-124-140-156-172 degrees, respectively, as indicated in Fig. E4.2.2. Each field coil has 18 turns. The developed rotor (field) magnetomotive force (mmf) F_r is depicted in Fig. E4.2.3. Note that the field mmf is approximately sinusoidal.
a) Calculate the distribution (breadth) factor of the stator winding k_{s t b}\left(=k_{s t d}\right)
b) Calculate the fundamental pitch factor of the stator winding k_{\text{stp 1}}.
c) Calculate the pitch factor of the rotor (r) winding k_{rp}.
d) Determine the stator flux Φ_{stmax}.
e) Compute the area (area_p) of one pole
f) Compute the field (f) current I_{fo} required at no load.
g) Determine the synchronous (s) reactance (per phase value) X_S of this synchronous machine in ohms.
h) Find the base impedance Z_{base} expressed in ohms.
i) Express the synchronous reactance X_S in per unit (pu).

9a0fa4d3-e553-4e8d-a5e8-625e7d2f7a67
a18c27d8-712b-4c06-998a-43ac9d3cf091
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a) Calculation of the distribution (breadth) factor of the stator winding k_{stb}=k_{std} is as follows. The breadth factor is defined for one phase belt as

k_{s t b}=\frac{\text { geometric sum } \sum_{i=1}^8 F_i}{\text { algebraic sum } \sum_{i=1}^8 F_i}              (E4.2-1)

It is convenient to evaluate Eq. E4.2-1 graphically, as shown in Fig. E4.2.4. Note that one slot pitch corresponds to 360°/48=7.5°. Thus, one gets from Fig. E4.2.4 the distribution or breadth factor

k_{s t b}=0.96 \text {. }            (E4.2-2)

b) Calculation of the pitch factor of the stator winding k_{stp  1} is as follows. One stator turn spans 16 slots out of 24 slots, that is, it has a pitch of (2/3); therefore, one obtains for the fundamental n=1

k_{\text {stp } 1}=\left|\sin \left(\frac{n \beta}{2}\right)\right|=\left|\sin \left(\frac{(1)(120)}{2}\right)\right|=0.866                (E4.2-3)

or for the 5th harmonic n=5

k_{s t p 5}=\left|\sin \left(\frac{(5)(120)}{2}\right)\right|=0.866 .

The 5th harmonic is not attenuated; therefore, the choice of a 2/3 winding pitch is not recommended.
The total fundamental winding factor of the stator winding is now

k_{s t}=k_{s t b} \cdot k_{s t p 1}=0.96(0.866)=0.831

c) Calculate the pitch factor of the rotor (r) winding k_{rp} as follows. The fundamental (n=1) pitch-factor of the rotor winding is correspondingly

\begin{aligned} & k_r=\left\{\left|\sum_{i=1}^8 \sin \left(\frac{n \beta_i}{2}\right)\right|\right\} / 8,\quad (E4.2-4) \\ & k_{r p}=\left\{\left|\sin \left(\frac{44^{\circ}}{2}\right)\right|+\left|\sin \left(\frac{60^{\circ}}{2}\right)\right|+\left|\sin \left(\frac{76^{\circ}}{2}\right)\right|+\left|\sin \left(\frac{92^{\circ}}{2}\right)\right|+\left|\sin \left(\frac{124^{\circ}}{2}\right)\right|\right. \\ &\left.+\left|\sin \left(\frac{140^{\circ}}{2}\right)\right|+\left|\sin \left(\frac{156^{\circ}}{2}\right)\right|+\left|\sin \left(\frac{172^{\circ}}{2}\right)\right|\right\} / 8 \Rightarrow k_m=0.751 . \end{aligned}

d) Determination of the stator flux Φ_{stmax} is as follows. The induced voltage in the stator winding per phase is

E_{p h t}=4.44 \cdot f \cdot N_{s t p h t} \cdot k_{s t b} \cdot k_{s t p 1} \cdot \Phi_{s t \operatorname{tax}}          (E4.2-5)

or one obtains for the stator flux

\Phi_{s t \max }=\frac{E_{L-L}}{\sqrt{3} \cdot 4.44 \cdot f \cdot N_{s t p h l} \cdot k_{s t b} \cdot k_{s t p 1}}                (E4.2-6)

with E_{L-L}=V_{L-L}=13,800 V at no load, one gets the flux for no-load condition:

\Phi_{s t \text { max }}^{\text {no-load }}=\frac{13800}{\sqrt{3}(4.44)(60)(16)(0.96)(0.866)}=2.25 \frac{\mathrm{Wb}}{\text { pole }} .                    (E4.2-7)

e) Compute the area (area_p) of one pole:

\operatorname{area}_p=\frac{\Phi_{\text {stmax }}^{\mathrm{no}-\mathrm{load}}}{B_{\max }}=2.25 \mathrm{~m}^2 \text {. }            (E4.2-8)

f) Compute the field (f ) current I_{fo} required at no load:

I_{f o}=\frac{B_{s t \text { max }} \cdot p \cdot g \cdot \pi}{4 \cdot \mu_0 \cdot k_{r p} \cdot N_{\text {rot }}}=\frac{1(2)(0.0127)(\pi)}{4\left(4 \pi \times 10^{-7}\right)(0.751)(288)}=73.4 A \text {. }                (E4.2-9)

g) Determine the synchronous (s) reactance (per phase value) XS in ohms. The selfinductance of phase a is

\begin{gathered} L_{a a}=\frac{\lambda_{a a}}{i_a}=\frac{N_{s t} \cdot \varphi_{s t \max }}{i_a}=\frac{N_{s t} \cdot B_{s t \max } \cdot \text { area }_p}{i_a} \\ =\frac{\mu_0 \cdot 4 \cdot k_{s t b} \cdot k_{s t p} \cdot\left(\mathrm{N}_{\mathrm{stph}}\right)^2 \cdot \text { area }_p}{p \cdot g \cdot \pi} \\ L_{a a}=\frac{4 \pi \times 10^{-7}(4)(0.96)(0.866)(16)^2(2.25)}{2(0.0127)(\pi)}=30.16 \mathrm{mH} . \end{gathered}              (E4.2-10)

According to Concordia [7]

L_d=L_{a a}+L_{a b}+1.5 L_{a a 2}              (E4.2-11)

Neglecting L_{a a 2} \text { and } L_{a a} \approx L_{a b} \text { one gets for the synchronous inductance } L_d.

L_d \approx 2 \cdot L_{a a}=60.33 \mathrm{mH} .

The synchronous reactance of the round-rotor machine is

X_S=\omega L_d=\omega L_S=22.74 \Omega              (E4.2-12)

The base voltage is

V_{\text {base }}=\frac{V_{L-L}}{\sqrt{3}}=V_{\text {phase }}=7,967 \mathrm{~V} \text {. }              (E4.2-13)

The base apparent power is per phase

S_{\text {base }}=S_{\text {phase }}=\frac{S_{\text {rat }}}{3}=5.33 \mathrm{MVA}              (E4.2-14)

and the base current is

I_{\text {base }}=I_{\text {phase }}=\frac{S_{\text {base }}}{V_{\text {base }}}=669 \mathrm{~A} .                (E4.2-15)

h) Find the base impedance Z_{base} expressed in ohms. The base impedance becomes

Z_{\text {base }}=\frac{V_{\text {base }}}{I_{\text {base }}}=11.9 \Omega .              (E4.2-16)

i) Express the synchronous reactance X_S in per unit (pu). The per-unit synchronous reactance is now

X_S^{p u}=\frac{X_S}{Z_{\text {base }}}=\frac{22.74}{11.9}=1.91 \mathrm{pu} .                (E4.2-17)

7c7e26fe-1841-49d0-b5ec-ccbd6095c814

Related Answered Questions