Holooly Plus Logo

Question 4.AE.1: A three-phase (m=3), four-pole (p=4) nonsalientpole (round-r......

A three-phase (m=3), four-pole (p=4) nonsalientpole (round-rotor) synchronous machine has the parameters X_S=2\ pu\ and\ R_a=0.05 pu. It is operated at (the phase voltage) V_a=1 pu at an overexcited (lagging current based on the generator reference system, where the current flows out of the machine) displacement power factor of cos φ=0.8 lagging, and per-phase current \left|\tilde{I}_a\right|=1 \mathrm{pu} \text {. The base (rated phase) values are }\left|\tilde{V}_a\right|_{\text {rated }}=V_{\text {base }}=24 \mathrm{kV}, \quad\left|I_a\right|_{\text {rated }}=I_{\text {base }}=1.4 \mathrm{kA}, \text { and the base impedance is } Z_{\text {base }}=V_ {base} ^/ I_{\text {base }}=17.14 \Omega ..

a) Draw the per-phase equivalent circuit of this machine.
b) What is the total rated apparent input power S (expressed in MVA)?
c) What is the total rated real input power P (expressed in MW)?
d) Draw a per-phase phasor diagram with the voltage scale of 1.0 pu≡3 inches, and the current scale of 1.0 pu≡2.5 inches.
e) From this phasor diagram determine the per-phase induced voltage \left|\tilde{E}_a\right| and the torque angle δ.
f) Calculate the rated speed (in rpm) of this machine at f=60 Hz.
g) Calculate the angular velocity ω_S (in rad/s).
h) Calculate the total (approximate) shaft power P_{\text {shaft }} \approx 3\left(E_{\mathrm{a}} \cdot V_{\mathrm{a}} \cdot \sin \delta\right) / X_{\mathrm{S}}.
i) Find the shaft torque T_{shaft} (in Nm).
j) Determine the total ohmic loss of the motor P_{\text {loss }}=3 \cdot R_a\left|\tilde{I}_a\right|^2.
k) Repeat the above analysis for cos φ=0.8 underexcited (leading current based on generator notation) displacement power factor and \left|\tilde{I}_a\right|=0.5 \mathrm{pu}.

b357c3f0-31aa-41cc-a3cc-6f5b06351763
e3a1186d-a3d8-4d34-8fe1-92d0c73aa86b
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a) The per-phase equivalent circuit of a nonsalient-pole synchronous machine based on generator notation is shown in Fig. 4.15a. The parameters of the machine are in ohms:

\begin{aligned} & R_a=0.05 \cdot Z_{\text {base }}=(0.05)(17.14 \Omega)=0.857 \Omega, \text { and } X_S=2 \cdot Z_{\text {base }}=2(17.14 \Omega) \\ & =34.28 \Omega \end{aligned}

b) S_{\text {rated }}=3 \cdot V_{a_{-} \text {rated }} \cdot I_{a_{-\text {rated }}}=3(24 \mathrm{kV})(1.4 \mathrm{kA})=100.8 \mathrm{MVA}        (E4.1-1)

c) P_{\text {rated }}=S_{\text {rated }} \cdot \cos \varphi=80.64 \mathrm{MW}        (E4.1-2)

d) The phasor diagram is given in Fig. E4.1.1.
\varphi=\cos ^{-1}(0.8)=0.6435 \mathrm{rad} \text { or } 36.87^{\circ} \text { lagging }          (E4.1-3)

\begin{aligned} & \left|\tilde{V}_{a-\text { rated }}\right|=1 \mathrm{pu}=24 \mathrm{kV} \equiv 3 \text { inches, } \\ & \mid \tilde{I}_a \text {-rated } \mid=1 \mathrm{pu}=1.4 \mathrm{kA} \equiv 2.5 \text { inches, } \\ & \mid \widetilde{I}_a \text {-rated } \mid \cdot R_a=1.4 \mathrm{kA}(0.05)(17.141 \Omega)=1199.8 \mathrm{~V} \equiv 0.15 \text { inches, } \\ & \left|\tilde{I}_{a-\text { rated }}\right| \cdot X_s=1.4 \mathrm{kA}(2)(17.141 \Omega)=47992 \mathrm{~V} \equiv 6 \text { inches. } \end{aligned}

e) For the induced voltage one obtains

E_a=\sqrt{\begin{array}{l} \left(\left|\tilde{V}_a\right|+\left|\tilde{V}_R\right| \cos \varphi+\left|\tilde{V}_X\right| \sin \varphi\right)^2 \\ +\left(\left|\tilde{V}_X\right| \cos \varphi-\left|\tilde{V}_R\right| \sin \varphi\right)^2 \end{array}}=2.735 \mathrm{pu}      (E4.1-4)

where

\left|\widetilde{V}_a\right|=1 \mathrm{pu},\left|\widetilde{V}_X\right|=2 \mathrm{pu},\left|\widetilde{V}_R\right|=0.05 \mathrm{pu}, \sin \varphi=0.6, \text { and } \cos \varphi=0.8

The torque angle δ is

\delta=\cos ^{-1}\left\{\left(\left|\widetilde{V}_a\right|+\left|\widetilde{V}_R\right| \cos \varphi+\left|\widetilde{V}_X\right| \sin \varphi\right) / E_a\right\}=0.611 \mathrm{rad} \text { or } 35^{\circ} .

f) Rated speed is

n_S=120 \mathrm{f} / \mathrm{p}=120(60) / 4=1800 \mathrm{rpm}          (E4.1-5)

g) Angular velocity is

\omega_S=2 \pi n_S / 60=188.7 \mathrm{rad} / \mathrm{s}            (E4.1-6)

h) Approximate shaft power is

\begin{aligned} P_{\text {shaft }} & \approx 3\left(E_a \cdot V_a \cdot \sin \delta\right) / X_S=3[(2.735)(24 \mathrm{k})(24 \mathrm{k}) \sin (0.611 \mathrm{rad})] /[(2)(17.14)] \\ & =79.1 \mathrm{MW} . \end{aligned}
(E4.1-7)

i) The shaft torque T_{shaft} is

T_{\text {shaft }}=P_{\text {shaft }} / \omega_S=419.14 \mathrm{kNm}                  (E4.1-8)

j) The total ohmic loss of the motor is

P_{\operatorname{loss}}=3 \cdot R_a\left|\widetilde{I}_{\mathrm{a}}\right|^2=3(0.05)(17.14)(1.4 \mathrm{k})^2=5.04 \mathrm{MW}                  (E4.1-9)

k) Repeatthe above analysis for underexcited (leading current based on generator reference system) displacement power factor \cos \varphi=0.8 \text { leading and }\left|\widetilde{I}_a\right|=0.5 \mathrm{pu}.

a) see Fig. 4.15a

b) S_{rated }=3 \cdot V_{a_rated } \cdot I_{a_rated}=3(24 \mathrm{kV})(0.7 \mathrm{kA})=50.4 \mathrm{MVA}

c) P_{\text {rated }}=S_{\text {rated }} \cdot \cos \varphi=40.32 \mathrm{MW}

d) The phasor diagram is given in Fig. E4.1.2.

\begin{aligned} & \varphi=\cos ^{-1}(0.8)=0.6435 \text { rador } 36.87^{\circ} \text { leading (underexcited), } \\ & \left|\widetilde{V}_{\text {a-rated }}\right|=1 \mathrm{pu}=24 \mathrm{kV} \equiv 3 \text { inches, } \\ & \mid \widetilde{I}_2-\text { rated } \mid=0.5 \mathrm{pu}=700 \mathrm{~A} \equiv 1.25 \text { inches, } \\ & \mid \tilde{I}_2-\text { rated } \mid \cdot R_{\mathrm{a}}=700 \mathrm{~A}(0.05)(17.141 \Omega)=599.9 \mathrm{~V} \equiv 0.075 \text { inches, } \\ & \left|I_{a-\text { rated }}\right| \cdot X_S=700 \mathrm{~A}(2)(17.14 \Omega)=23.996 \mathrm{kV} \equiv 3 \text { inches. } \end{aligned}

e) For the induced voltage one obtains

\begin{aligned} E_a & =\sqrt{\begin{array}{l} \left(\left|\widetilde{V}_a\right|+\left|\widetilde{V}_R\right| \cos \varphi-\left|\widetilde{V}_X\right| \sin \varphi\right)^2 \\ +\left(\left|\widetilde{V}_X\right| \cos \varphi+\left|\widetilde{V}_R\right| \sin \varphi\right)^2 \end{array}} \\ & =0.917 \text { pu or } 22.004 \mathrm{kV}, \end{aligned}

where

\left|\widetilde{V}_a\right|=1 \mathrm{pu},\left|\widetilde{V}_X\right|=1 \mathrm{pu},\left|\tilde{V}_r\right|=0.025 \mathrm{pu}, \sin \varphi=0.6, \cos \varphi=0.8
The torque angle δ is

\delta=\cos ^{-1}\left\{\left(\left|\widetilde{V}_a\right|+\left|\widetilde{V}_R \cos \varphi-\right| \widetilde{V}_X \mid \sin \varphi\right) \mid / E_a\right\}=1.095 \mathrm{rad} \text { or } 62.74^{\circ}

f) Rated speed is

n_S=120 \mathrm{f} / \mathrm{p}=120 \cdot 60 / 4=1800 \mathrm{rpm}.

g) Angular velocity is \omega_S=2 \pi n_S / 60=188.7 \mathrm{rad} / \mathrm{s}

h) Approximate shaft power is

\begin{aligned} P_{\text {shaft }} & \approx 3\left(E_a \cdot V_a \cdot \sin \delta\right) / X_S=3[(0.917)(24 \mathrm{k})(24 \mathrm{k}) \sin (1.095 \mathrm{rad})] /[(2)(17.14)] \\ & =41.09 \mathrm{MW} \end{aligned}

i) The shaft torque T_{\text {shaft }} \text { is } T_{\text {shaft }}=P_{\text {shaft }} / \omega_S=217.75 \mathrm{kNm}.

j) The total ohmic loss of the motor is

P_{\text {loss }}=3 \cdot R_a\left|\widetilde{I}_a\right|^2=3(0.05)(17.14)(0.7 \mathrm{k})^2=1.26 \mathrm{MW}
71f4cfb3-0a38-41f3-a941-6ee20c3d0fb8

Related Answered Questions