Question 20.7: A rectangular section thin-walled beam of length L and bread......

A rectangular section thin-walled beam of length L and breadth 3b, depth b, and wall thickness t is built-in at one end (Fig. P.20.7). The upper surface of the beam is subjected to a pressure which varies linearly across the breadth from a value p0p_{0} at edge AB to zero at edge CD. Note that the complete upper surface of the beam is subjected to this pressure. Find the vertical deflection of point A.

p.20.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The pressure loading is equivalent to a shear force/unit length of 3bp0/23b p_{0}/2 acting in the vertical plane of symmetry together with a torque =3bp0(3b/2b)/2=3b2p0/4=3 b p_0(3 b / 2-b) / 2=3 b^2 p_0 / 4 as shown in Fig. S.20.7. The deflection of the beam is then, from Eqs (20.14), (20.17), and (20.19),

ΔT=LT0T1GJdz\Delta_T=\int_L \frac{T_0 T_1}{G J} d z           (20.14)

ΔM=1EL(My,1My,0Iyy+Mx,1Mx,0Ixx)dz\Delta_M=\frac{1}{E} \int_L\left(\frac{M_{y, 1}M_{y, 0}}{I_{y y}}+\frac{M_{x, 1} M_{x, 0}}{I_{xx}}\right) d z              (20.17)

ΔS=L(sect q0q1Gtds)dz\Delta_S=\int_L\left(\int_{\text {sect }} \frac{q_0 q_1}{G t} d s\right) d z              (20.19)

Δ=LT0T1GJdz+LMx,1Mx,0EIxxdz+L(sect q0q1Gtds)dz\Delta=\int_L \frac{T_0 T_1}{G J} d z+\int_L\frac{M_{x, 1} M_{x, 0}}{E I_{x x}} dz+\int_L\left(\int_{\text {sect }} \frac{q_0 q_1}{G t} ds\right) d z        (i)

Now

T0=3b2p0(Lz)/4T1=3b/2T_0=3 b^2 p_0(L-z) / 4 \quad T_1=3 b / 2

Also, from Eqs (3.12) and (18.4),

T=GJdθdzT=G J{\frac{\mathrm{d}\theta}{\mathrm{d}z}}          (3.12)

dθdz=T4A2dsGt\frac{ d \theta}{ d z}=\frac{T}{4 A^2} \oint \frac{ d s}{G t}          (18.4)

J=4A2ds/t=4(3b2)28b/t=9b3t2J=\frac{4 A^2}{\oint d s / t}=\frac{4\left(3b^2\right)^2}{8 b / t}=\frac{9 b^3 t}{2}

Thus,

LT0T1GJdz=0Lp04Gt(Lz)dz=p0L28Gt\int_L \frac{T_0 T_1}{G J} d z=\int_0^L\frac{p_0}{4 G t}(L-z) d z=\frac{p_0 L^2}{8G t}        (ii)

Also,

Mx,0=3bp0(Lz)2/4Mx,1=1(Lz)M_{x, 0}=3 b p_0(L-z)^2 / 4 \quad M_{x, 1}=1(L-z)

Then

LMx,1Mx,0EIxxdz=0L3bp04EIxx(Lz)3dz\int_L \frac{M_{x, 1} M_{x, 0}}{E I_{x x}} dz=\int_0^L \frac{3 b p_0}{4 E I_{x x}}(L-z)^3 d z

in which

Ixx=2×3bt×(b/2)2+2tb3/12=5b3t/3I_{x x}=2 \times 3 b t \times(b / 2)^2+2 t b^3 /12=5 b^3 t / 3

Thus,

LMx,1Mx,0EIxxdz=9p020Eb2t0L(Lz)3dz=9p0L480Eb2t\int_L \frac{M_{x, 1} M_{x, 0}}{E I_{x x}} dz=\frac{9 p_0}{20 E b^2 t} \int_0^L(L-z)^3 d z=\frac{9p_0 L^4}{80 E b^2 t}        (iii)

Further,

Sy,0=3bp02(Lz)Sy,1=1S_{y, 0}=-\frac{3 b p_0}{2}(L-z) \quad S_{y, 1}=-1

Taking the origin for s at 1 in the plane of symmetry where qs,0=0 and  since Ixy=0 and Sx=0,q_{s,0}=0{\mathrm{~and~}}\mathrm{~since~}I_{x y}=0{\mathrm{~and~}}S_{x}=0, Eq. (17.15) simplifies to

qs=(SxIxxSyIxyIxxIyyIxy2)0stxds(SyIyySxIxyIxxIyyIxy2)0styds+qs,0q_s=-\left(\frac{S_x I_{x x}-S_y I_{x y}}{I_{x x}I_{y y}-I_{x y}^2}\right) \int_0^s t x d s-\left(\frac{S_y I_{y y}-S_x I_{x y}}{I_{x x} I_{y y}-I_{xy}^2}\right) \int_0^s t y d s+q_{s, 0}         (17.15)

qs=SyIxx0stydsq_s=-\frac{S_y}{I_{x x}} \int_0^s t y d s

Then

q12=3Sy5b3t0s1t(b2)ds1q_{12}=-\frac{3 S_y}{5 b^3 t} \int_0^{s_1}t\left(\frac{b}{2}\right) d s_1

i.e.,

q12=3Sy10b2s1q_{12}=-\frac{3 S_y}{10 b^2} s_1

from which

q2=9Sy20bq_2=-\frac{9 S_y}{20 b}

Also,

q23=SyIxx0s2t(b2s2)ds29Sy20bq_{23}=-\frac{S_y}{I_{x x}} \int_0^{s_2}t\left(\frac{b}{2}-s_2\right) d s_2-\frac{9S_y}{20 b}

i.e.,

q23=3Sy5b3(b2s2s222)9Sy20bq_{23}=-\frac{3 S_y}{5 b^3}\left(\frac{b}{2} s_2-\frac{s_2^2}{2}\right)-\frac{9 S_y}{20 b}

Then

sect q0q1Gtds=403b/23bp0(Lz)2Gt(310b2)2s12ds1+20b3bp0(Lz)2Gt(320b)2(2s2b2s22b2+3)2ds2\int_{\text {sect }} \frac{q_0 q_1}{G t} d s=4\int_0^{3 b / 2} \frac{3 b p_0(L-z)}{2 Gt}\left(\frac{3}{10 b^2}\right)^2 s_1^2 d s_1 +2\int_0^b \frac{3 b p_0(L-z)}{2 G t}\left(\frac{3}{20b}\right)^2\left(2 \frac{s_2}{b}-2 \frac{s_2^2}{b^2}+3\right)^2 d s_2

which gives

sect q0q1Gtds=1359p01000Gt(Lz)\int_{\text {sect }} \frac{q_0 q_1}{G t} ds=\frac{1359 p_0}{1000 G t}(L-z)

Hence

0L(sect q0q1Gtds)dz=1359p01000Gt0L(Lz)dz=1359p0L22000Gt\int_0^L\left(\int_{\text {sect }} \frac{q_0 q_1}{Gt} d s\right) d z=\frac{1359 p_0}{1000 G t}\int_0^L(L-z) d z=\frac{1359 p_0 L^2}{2000 G t}        (iv)

Substituting in Eq. (i) from Eqs (ii)–(iv) gives

Δ=p0L28Gt+9p0L480Eb2t+1359p0L22000Gt\Delta=\frac{p_0 L^2}{8 G t}+\frac{9 p_0 L^4}{80 E b^2 t}+\frac{1359 p_0 L^2}{2000 G t}

Thus,

Δ=p0L2t(9L280Eb2+16092000G)\Delta=\frac{p_0 L^2}{t}\left(\frac{9 L^2}{80 Eb^2}+\frac{1609}{2000 G}\right)
s.20.7

Related Answered Questions