The pressure loading is equivalent to a shear force/unit length of 3bp0/2 acting in the vertical plane of symmetry together with a torque =3bp0(3b/2−b)/2=3b2p0/4 as shown in Fig. S.20.7. The deflection of the beam is then, from Eqs (20.14), (20.17), and (20.19),
ΔT=∫LGJT0T1dz (20.14)
ΔM=E1∫L(IyyMy,1My,0+IxxMx,1Mx,0)dz (20.17)
ΔS=∫L(∫sect Gtq0q1ds)dz (20.19)
Δ=∫LGJT0T1dz+∫LEIxxMx,1Mx,0dz+∫L(∫sect Gtq0q1ds)dz (i)
Now
T0=3b2p0(L−z)/4T1=3b/2
Also, from Eqs (3.12) and (18.4),
T=GJdzdθ (3.12)
dzdθ=4A2T∮Gtds (18.4)
J=∮ds/t4A2=8b/t4(3b2)2=29b3t
Thus,
∫LGJT0T1dz=∫0L4Gtp0(L−z)dz=8Gtp0L2 (ii)
Also,
Mx,0=3bp0(L−z)2/4Mx,1=1(L−z)
Then
∫LEIxxMx,1Mx,0dz=∫0L4EIxx3bp0(L−z)3dz
in which
Ixx=2×3bt×(b/2)2+2tb3/12=5b3t/3
Thus,
∫LEIxxMx,1Mx,0dz=20Eb2t9p0∫0L(L−z)3dz=80Eb2t9p0L4 (iii)
Further,
Sy,0=−23bp0(L−z)Sy,1=−1
Taking the origin for s at 1 in the plane of symmetry where qs,0=0 and since Ixy=0 and Sx=0, Eq. (17.15) simplifies to
qs=−(IxxIyy−Ixy2SxIxx−SyIxy)∫0stxds−(IxxIyy−Ixy2SyIyy−SxIxy)∫0styds+qs,0 (17.15)
qs=−IxxSy∫0styds
Then
q12=−5b3t3Sy∫0s1t(2b)ds1
i.e.,
q12=−10b23Sys1
from which
q2=−20b9Sy
Also,
q23=−IxxSy∫0s2t(2b−s2)ds2−20b9Sy
i.e.,
q23=−5b33Sy(2bs2−2s22)−20b9Sy
Then
∫sect Gtq0q1ds=4∫03b/22Gt3bp0(L−z)(10b23)2s12ds1+2∫0b2Gt3bp0(L−z)(20b3)2(2bs2−2b2s22+3)2ds2
which gives
∫sect Gtq0q1ds=1000Gt1359p0(L−z)
Hence
∫0L(∫sect Gtq0q1ds)dz=1000Gt1359p0∫0L(L−z)dz=2000Gt1359p0L2 (iv)
Substituting in Eq. (i) from Eqs (ii)–(iv) gives
Δ=8Gtp0L2+80Eb2t9p0L4+2000Gt1359p0L2
Thus,
Δ=tp0L2(80Eb29L2+2000G1609)