Holooly Plus Logo

Question 8.15: A right-hand circularly polarized wave, E^i = (Eo ax - j Eo ......

A right-hand circularly polarized wave, \pmb{E}^{i} =(E_{o} \pmb{a}_{x} – j E_{o} \pmb{a}_{y}) e^{-j\beta z}, propagates in free space(z < 0) and impinges normally on the surface of a perfect conductor at z = 0. Determine

(a) \mathscr{E}^r and its polarization state,

(b) surface current density induced on the surface of the perfect conductor, and

(c) instantaneous form of the total electric field intensity in free space.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Using Γ = –1, the electric field phasor of the reflected wave is written as

\pmb{E}^{r} =\Gamma (E_{o} \pmb{a}_{x} – j E_{o} \pmb{a}_{y}) e^{j\beta z} = (-E_{o} \pmb{a}_{x} + j E_{o} \pmb{a}_{y}) e^{j\beta z}                                         (8-128)

The instantaneous form of the reflected wave is

\mathscr{E}^{r} =Re \left[(-E_{o} \pmb{a}_{x} + e^{j\pi /2 } E_{o} \pmb{a}_{y}) e^{j\beta z} e^{j\omega t}\right] \\ \quad =-\pmb{a}_{x} E_{o} \cos (\omega t +\beta z) – \pmb{a}_{y} E_{o}\sin (\omega t +\beta z)                                                    (8-129)

At the z = 0 plane, we have

\mathscr{E}^{r} = – \pmb{a}_{x} E_{o}                                at  \omega t= 0                               (8-130a) \\ \mathscr{E}^{r} = – \pmb{a}_{y} E_{o}                                 at  \omega t = \pi /2                               (8-130b)

If the left four fingers follow the rotation of \mathscr{E}^{r} in Eq. (8-130), the left thumb points in the direction of propagation of the reflected wave, as shown in Fig. 8.14. Thus, the reflected wave is left-hand circularly polarized. Note that the polarization state of a circularly polarized wave is reversed when the wave is reflected by a perfect conductor.

(b) Magnetic field intensities of the incident and reflected waves are expressed in free space as

\pmb{H}^{i} = \frac{1}{\eta _{o}}(\pmb{a}_{k}\times \pmb{E}^{i}) = \frac{1}{\eta _{o}}\pmb{a}_{z} \times (E_{o} \pmb{a}_{x} – j E_{o} \pmb{a}_{y}) e^{-j\beta z}\\  \quad \quad \quad \quad \quad \quad \quad \quad  =\frac{E_{o}}{\eta _{o}}( \pmb{a}_{y} + j \pmb{a}_{x}) e^{-j\beta z}                                                                   (8-131) \\ \pmb{H}^{r} = \frac{1}{\eta _{o}}(\pmb{a}_{k}\times \pmb{E}^{r}) = \frac{1}{\eta _{o}}(-\pmb{a}_{z}) \times (-E_{o} \pmb{a}_{x} + j E_{o} \pmb{a}_{y}) e^{j\beta z}\\\quad \quad \quad \quad \quad \quad \quad \quad = \frac{E_{o}}{\eta _{o}}( \pmb{a}_{y} + j \pmb{a}_{x}) e^{j\beta z}                                                                   (8-132)

The total magnetic field intensity at the z = 0 plane is obtained from Eqs. (8-131) and (8-132) as

\pmb{H} (0) = \pmb{H}^{i}(o) + \pmb{H}^{r}(0) = \frac{2 E_{o}}{\eta _{o}}( \pmb{a}_{y} + j \pmb{a}_{x})                                             (8-133)

Using the outward unit normal to the surface, \pmb{a}_{n} = – \pmb{a}_{z} , the surface current density induced on the conductor is

\pmb{J} = \pmb{a}_{n} \times \pmb{H}(0) = (-\pmb{a}_{z}) \times \frac{2 E_{o}}{\eta _{o}}( \pmb{a}_{y} + j \pmb{a}_{x}) \\ \quad \quad \quad \quad \quad \quad \quad = \frac{2 E_{o}}{\eta _{o}}( \pmb{a}_{x} – j \pmb{a}_{y})                                               (8-134)

(c) Total electric field intensity in free space is written as

\pmb{E} = \pmb{E}^{i} + \pmb{E}^{r} = (E_{o} \pmb{a}_{x} – j E_{o} \pmb{a}_{y}) e^{- j \beta z} + ( – E_{o} \pmb{a}_{x} + j E_{o} \pmb{a}_{y}) e^{ j \beta z} \\ \quad \quad \quad \quad \quad \quad  =- \pmb{a}_{x} 2j E_{o} \sin (\beta z) – \pmb{a}_{y} 2 E_{o} \sin (\beta z)

The instantaneous form of the total electric field intensity in free space is therefore

\mathscr{E} = Re \left[ \pmb{E} e^{j\omega t} \right] = Re \left[\pmb{a}_{x} 2 E_{o} \sin (\beta z) e^{(j\omega t – \pi / 2) } – \pmb{a}_{y} 2 E_{o} \sin (\beta z) e^{j\omega t }\right] \\ \quad \quad \quad \quad \quad \quad \quad =2 E_{o} \sin (\beta z) [\pmb {a}_{x} \sin (\omega t) – \pmb{a}_{y} \cos (\omega t)]
8.14

Related Answered Questions