Holooly Plus Logo

Question 8.13: A standing wave of S = 4 is formed in free space(z < 0). ......

A standing wave of S = 4 is formed in free space(z < 0). The first maximum is observed at a distance 0.2[m] from the interface at z = 0 , and two adjacent maxima are found to be separated by 0.5[m]. Determine \eta _{2}  of the material in the region z 0.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The distance between two adjacent maxima is equal to a half wavelength:

λ = 2 × 0.5[m] , and thus \beta _{1} = \frac{2 \pi }{\lambda } = 2\pi .                        (8-120)

The first maximum corresponds to n = 0 in Eq. (8-115b):

\boxed{z _{max} = – \frac{1}{2\beta _{1}} (\phi + 2\pi n)}                       (n = 0, ±1, ±2, …)                              (8-115b)
z _{max} = -\frac{1 }{2 \beta _{1} }\phi = – 0.2 [m]                                        (8-121)

Inserting Eq. (8-120) into Eq. (8-121), we get

Φ = 0.8π                                                                    (8-122)

From Eq. (8-119), we get

\boxed{S = \frac{\left|\hat{E}_{1}\right|_{max} }{\left|\hat{E}_{1}\right|_{min} } = \frac{1 + \left|\Gamma \right| }{1  –   \left|\Gamma \right| } }                                                    (8-119)

\left|\Gamma \right| = \frac{S – 1}{S + 1} = \frac{4 -1}{4 + 1} = 0.6                                                               (8-123)

Combining Eq. (8-122) and Eq. (8-123), the reflection coefficient is

\Gamma = 0.6 e^{j 0.8 \pi }                                                                   (8-124)

Rewriting Eq. (8-107a), we have

\boxed{\Gamma = \frac{E^{r}_{o}}{E^{i}_{o}} = \frac{\eta _{2}  –  \eta _{1}}{\eta _{2} + \eta _{1}}}                                                        (8-107a)

\frac{\eta _{2}}{\eta _{1}} = \frac{1 + \Gamma }{1  –  \Gamma }                                                                   (8-125)

Substituting Eq. (8-124) and  \eta _{1} = \eta _{o}= 377 [Ω] into Eq. (8-125), we get the intrinsic impedance of medium 2 as

\eta _{2}=  377  \frac{1 + 0.6 e^{j 0.8\pi } }{1 – 0.6 e^{j 0.8\pi } } = 154 e^{j 0.83} [\Omega ].

Related Answered Questions