Holooly Plus Logo

Question 7.AE.8: A simple (few buses) power system (Fig. E7.8.1) is used to i......

A simple (few buses) power system (Fig. E7.8.1) is used to illustrate in detail the Newton– Raphson load flow analysis. All impedances are in pu and the base apparent power is S_{base}=1 kVA. Compute the fundamental admittance matrix for this system.

7c0efead-d815-42cb-ace2-5acd397df4c8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For this example y_{14}=-\tilde{y}_{14}, \text { where } \tilde{y}_{14} is the admittance between bus 1 and bus 4 and y_{14} is an entry of the bus admittance matrix Y_{bus}. Note the minus sign.

\begin{gathered} y_{14}=-\widetilde{y}_{14}=\frac{-1}{0.01+j 0.02}=\frac{-1}{0.02236 \angle 1.1071 \mathrm{rad}} \\ =\frac{1 \angle \pm 3.1415 \mathrm{rad}}{0.02236 \angle 1.1071 \mathrm{rad}}=44.72 \mathrm{pu} \angle 2.034 \mathrm{rad} \\ y_{12}=-\tilde{y}_{12}=\frac{-1}{0.01+j 0.01}=\frac{-1}{0.01414 \angle 0.7854} \\ =\frac{1 \angle \pm 3.1415 \mathrm{rad}}{0.01414 \angle 0.7854}=70.72 \mathrm{pu} \angle 2.356 \mathrm{rad} \\ y_{11}=-\left\{\tilde{y}_{14}+\tilde{y}_{12}\right\}=-\{44.72 \cos (2.034)+70.72 \cos (2.356)+j[44.72 \sin (2.034) \\ +70.72 \sin (2.356)]\}=-\{-19.98-49.997+j[40.008+50.02]\} \\ =(69.98-j 90.03)=114.03 \mathrm{pu} \angle-0.910 \mathrm{rad} \end{gathered}.
y_{13}=-\widetilde{y}_{13}=0 (because there is no direct line between buses 1 and 3)
\begin{aligned} & y_{23}=-\tilde{y}_{23}=\frac{-1}{0.02+j 0.08}=\frac{1 \angle \pm 3.1415 \mathrm{rad}}{0.082462 \angle 1.3258 \mathrm{rad}} \\ & =12.127 \mathrm{pu} \angle 1.816 \mathrm{rad} \\ & y_{24}=-\tilde{y}_{42}=0 \\ & y_{34}=-\tilde{y}_{34}=\frac{-1}{0.01+j 0.02}=\frac{1 \angle \pm 3.1415 \mathrm{rad}}{0.02236 \angle 1.1071 \mathrm{rdd}} \\ & =44.72 \mathrm{pu} \angle 2.034 \mathrm{rad} \\ & y_{22}=-\left(\tilde{y}_{12}+\tilde{y}_{23}\right)=-\{70.72 \cos (2.356)+ \\ & 12.127 \cos (1.816)+j(70.72 \sin (2.356)+ \\ & 12.127 \sin (1.816)]\}=-\{-49.997-2.994+ \\ & j(50.102+11.764)\}=-\{-52.941+ \\ & j 61.862\}=81.42 \mathrm{pu} \angle-0.863 \mathrm{rad} \\ & y_{33}=-\left(\tilde{y}_{23}+\tilde{y}_{34}\right)=-\{12.127 \cos (1.816)+ \\ & 44.72 \cos (2.034)+j[12.127 \sin (1.8161)+ \\ & 44.72 \sin (2.034)]\}=-\{-2.944-19.982+j(11.764+ \\ & 4.008)\}=-\{-22.93+j 51.772\}=56.62 \mathrm{pu} \angle-1.154 \\ & \end{aligned}\\ \begin{aligned} & y_{44}=-\left(\tilde{y}_{14}+\tilde{y}_{34}\right)=-\{44.72 \cos (2.034)+ \\ & 44.72 \cos (2.034)+j(44.72 \sin (2.034)+ \\ & 44.72 \sin (2.034)]\}=-\{-19.982-19.982+j(40.008+ \\ & 40.008)\}=\{-39.964+j 80.016\}=89.44 \mathrm{pu} \angle-1.1076 \mathrm{rad} . \end{aligned}

The bus admittance matrix is now

\bar{Y}_{\text {bus }}=\left[\begin{array}{cccc} 114.03 \mathrm{pu} \angle-0.910 \mathrm{rad} & 70.72 \mathrm{pu} \angle 2.356 \mathrm{rad} & 0 & 44.72 \mathrm{pu} \angle 2.034 \mathrm{rad} \\ 70.72 \mathrm{pu} \angle 2.356 \mathrm{rad} & 81.42 \mathrm{pu} \angle-0.863 \mathrm{rad} & 12.127 \mathrm{pu} \angle 1.816 \mathrm{rad} & 0 \\ 0 & 12.127 \mathrm{pu} \angle 1.816 \mathrm{rad} & 56.62 \mathrm{pu} \angle-1.154 \mathrm{rad} & 44.72 \mathrm{pu} \angle 2.034 \mathrm{rad} \\ 44.72 \mathrm{pu} \angle 2.034 \mathrm{rad} & 0 & 44.72 \mathrm{pu} \angle 2.034 \mathrm{rad} & 89.44 \mathrm{pu} \angle-1.1076 \mathrm{rad} \end{array}\right] .

Note that \bar{Y}_{bus} is singular; that is, \left(\bar{Y}_{\text {bus }}\right)^{-1} cannot be found, because there is no admittance connected to the ground bus. This is unimportant for the Newton-Raphson approach because for forming of the Jacobian the entries of \bar{Y}_{\text {bus }} \text { are used and } \bar{Y}_{\text {bus }} is not inverted.

Related Answered Questions

Question: 7.AE.17

Verified Answer:

Step #4 of Harmonic Load Flow. The matrix equation...
Question: 7.AE.16

Verified Answer:

Step #3 of Harmonic Load Flow. Evaluation of the m...
Question: 7.AE.10

Verified Answer:

\begin{gathered} J_{11}=\frac{\partial \Del...