Holooly Plus Logo

Question 7.AE.9: For the system of Fig. E7.8.1, assume bus 1 is the swing bus......

For the system of Fig. E7.8.1, assume bus 1 is the swing bus \left(\delta_1=0 \text { and }\left|\widetilde{V}_1\right|=1.0 \mathrm{pu}\right). Then we can make an initial guess for bus voltage vector \bar{x}^0=\left(\delta_2,\left|V_2\right|, \delta_3,\left|V_3\right|, \delta_4\right., \left.\left|\widetilde{V}_4\right|\right)^t=(0,1,0,1,0,1)^t. Note, the superscript 0 means initial guess. Compute the mismatch power vector for this initial condition.

bd4aa5e1-518e-4b33-96f0-3f846fa2cbe5
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
\begin{aligned} & \bar{X}^0=\left(\delta_2,\left|\tilde{V}_2\right|, \delta_3,\left|\tilde{V}_3\right|, \delta_4,\left|\tilde{V}_4\right|\right)^t=(0,1,0,1,0,1)^t \\ & \Delta \bar{W}^0=\left(P_2+F_{r, 2}, Q_2+F_{i, 2}, P_3+F_{r, 3}, Q_3+F_{i, 3}, P_4+F_{r, 4}, Q_4+F_{i, 4}\right)^t \\ & \Delta P_2=P_2+F_{r, 2}=P_2+\sum_{j=1}^4 y_{2 j} V_j V_2 \cos \left(-\theta_{2 j}-\delta_j+\delta_2\right) \\ & =P_2+y_{21} V_1 V_2 \cos \left(-\theta_{21}-\delta_1+\delta_2\right) \\ & +y_{22} V_2 V_2 \cos \left(-\theta_{22}-\delta_2+\delta_2\right) \\ & +y_{23} V_3 V_2 \cos \left(-\theta_{23}-\delta_3+\delta_2\right) \\ & +y_{24} V_4 V_2 \cos \left(-\theta_{24}-\delta_4+\delta_2\right) \\ & \Delta P_2=P_2+F_{r, 2}=0.10+\{70.72 \cdot 1 \cdot 1 \cdot \cos (-2.356- \\ & 0+0)+81.42 \cdot 1 \cdot 1 \cdot \cos (0.863-0+0)+12.127 \text {. } \\ & 1 \cdot 1 \cdot \cos (-1.816-0+0)+0\}=0.10-49.996+ \\ & 52.936-2.942=0.0978 \\ & \Delta Q_2=Q_2+F_{i, 2}=Q_2+\sum_{j=1}^4 y_{2 j} V_j V_2 \sin \left(-\theta_{2 j}-\delta_j+\delta_2\right) \\ & =Q_2+y_{21} V_1 V_2 \sin \left(-\theta_{21}-\delta_1+\delta_2\right) \\ & +y_{22} V_2 V_2 \sin \left(-\theta_{22}-\delta_2+\delta_2\right) \\ & +y_{23} V_3 V_2 \sin \left(-\theta_{23}-\delta_3+\delta_2\right) \\ & +y_{24} V_4 V_2 \sin \left(-\theta_{24}-\delta_4+\delta_2\right) \\ & \end{aligned}\\ \begin{aligned} & \Delta Q_2=Q_2+F_{i, 2}=0.10+\{70.72 \cdot 1 \cdot \sin (-2.356-0 \\ & +0)+81.42 \cdot 1 \cdot \sin (0.863-0+0)+12.127 . \\ & 1 \cdot 1 \cdot \sin (-1.816-0+0)+0\}=0.10-50.016+ \\ & 61.86-11.57=0.374 \\ & \Delta P_3=P_3+F_{r, 3}=P_3+y_{31} V_1 V_3 \cos \left(-\theta_{31}-\delta_1+\delta_3\right)+ \\ & y_{32} V_2 V_3 \cos \left(-\theta_{32}-\delta_2+\delta_3\right)+y_{33} V_3 V_3 \cos \\ & \left(-\theta_{33}-\delta_3+\delta_3\right)+y_{34} V_4 V_3 \cos \left(-\theta_{34}-\delta_4+\delta_3\right) \\ & \Delta P_3=P_3+F_{r, 3}=0.0+0.0+\{12.127 \cdot 1 \cdot 1 \cdot \cos (-1.816-0+0) \\ & +56.62 \cdot 1 \cdot 1 \cdot \cos (1.154-0+0)+44.72 \cdot 1 \cdot 1 \cdot \cos (-2.034-0+0)\} \\ & =0.0+0.0-2.944+22.92-19.98=-0.0056 \\ & \Delta Q_3=Q_3+F_{i, 3}=Q_3+y_{31} V_1 V_3 \sin \left(-\theta_{31}-\delta_1+\delta_3\right)+ \\ & y_{32} V_2 V_3 \sin \left(-\theta_{32}-\delta_2+\delta_3\right)+y_{33} V_3 V_3 \sin \left(-\theta_{33}-\delta_3+\delta_3\right) \\ & +y_{34} V_4 V_3 \sin \left(-\theta_{34}-\delta_4+\delta_3\right) \\ & \Delta Q_3=Q_3+F_{i, 3}=0.0+0.0+\{12.127 \cdot 1 \cdot 1 . \\ & \sin (-1.816-0+0)+56.62 \cdot 1 \cdot 1 \cdot \sin (1.154-0+0) \\ & +44.72 \cdot 1 \cdot 1 \cdot \sin (-2.034-0+0)\}=0.0+0.0- \\ & 11.764+51.77-40.008=-0.00166 \\ & \Delta P_4=P_4+F_{r, 4}=P_4+y_{41} V_1 V_4 \cos \left(-\theta_{41}-\delta_1+\delta_4\right)+ \\ & y_{42} V_2 V_4 \cos \left(-\theta_{42}-\delta_2+\delta_4\right)+y_{43} V_3 V_4 \cos \left(-\theta_{43}-\delta_3+\delta_4\right) \\ & +y_{44} V_4 V_4 \cos \left(-\theta_{44}-\delta_4+\delta_4\right) \\ & \Delta P_4=P_4+F_{\mathrm{r}, 4}=0.25+\{44.72 \cdot 1 \cdot 1 \cdot \cos (-2.034- \\ & 0+0)+0+44.72 \cdot 1 \cdot 1 \cdot \cos (-2.034-0+0)+ \\ & 89.44 \cdot 1 \cdot 1 \cdot \cos (1.1076-0+0)\}=0.25- \\ & 19.98+0-19.98+39.96=0.2527 \\ & \Delta Q_4=Q_4+F_{i, 4}=Q_4+y_{41} V_1 V_4 \sin \left(-\theta_{41}-\delta_1+\delta_4\right)+ \\ & y_{42} V_2 V_4 \sin \left(-\theta_{42}-\delta_2+\delta_4\right)+y_{43} V_3 V_4 \sin \left(-\theta_{43}-\right. \\ & \left.\delta_3+\delta_4\right)+y_{44} V_4 V_4 \sin \left(-\theta_{44}-\delta_4+\delta_4\right) \\ & \Delta Q_4=Q_4+F_{i, 4}=0.1+\{44.72 \cdot 1 \cdot 1 \cdot \sin (-2.034- \\ & 0+0)+0+44.72 \cdot 1 \cdot 1 \cdot \sin (-2.034-0+0)+ \\ & 89.44 \cdot 1 \cdot 1 \cdot \sin (1.1076-0+0)\}=0.1- \\ & \end{aligned}

40.0076 + 0-40.0076 + 80.016 = 0.1004.

The mismatch power vector is now

\begin{gathered} \Delta \bar{W}^0=(0.0978,0.374,-0.0056 \\ -0.00166,0.2527,0.1004)^t \end{gathered}

Related Answered Questions

Question: 7.AE.17

Verified Answer:

Step #4 of Harmonic Load Flow. The matrix equation...
Question: 7.AE.16

Verified Answer:

Step #3 of Harmonic Load Flow. Evaluation of the m...
Question: 7.AE.10

Verified Answer:

\begin{gathered} J_{11}=\frac{\partial \Del...