Holooly Plus Logo

Question 7.AE.17: Using the results of Application Examples 7.15 and 7.16, eva......

Using the results of Application Examples 7.15 and 7.16, evaluate the Jacobian matrix for the system of Fig. E7.14.1.

46761591-9ad2-4419-9eff-a873c55b5125
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step #4 of Harmonic Load Flow. The matrix equation shown below makes it easy to identify the entries of the Jacobian matrix:

J^0=\left|\begin{array} {lllllllllllllllll|l}& \underbrace{\delta_2^{(1)}}_1 &\underbrace{\left|\tilde{V}_2^{(1)}\right|}_I& \underbrace{\delta_3^{(1)}}_1& \underbrace{\left|\tilde{V}_3^{(1)}\right|}_I& \underbrace{\delta_4^{(1)}}_1& \underbrace{\left|\tilde{V}_4^{(1)}\right|}_1 &\underbrace{\delta_1^{(5)}}_1& \underbrace{\left|\tilde{V}_1^{(5)}\right|}_I& \underbrace{\delta_2^{(5)}}_1 &\underbrace{\left|\tilde{V}_2^{(5)}\right|}_1& \underbrace{\delta_3^{(5)}}_1& \underbrace{\left|\tilde{V}_3^{(5)}\right|}_1& \underbrace{\delta_4^{(5)}}_1& \underbrace{\left|\tilde{V}_4^{(5)}\right|}_I& \underbrace{\alpha}_1& \underbrace{\beta}_1 \\ &  J_{1,1}^0 & J_{1,2}^0 & J_{1,3}^0 & J_{1,4}^0 & J_{1,5}^0 & J_{1,6}^0 & J_{1,7}^0 & J_{1,8}^0 & J_{1,9}^0 & J_{1,10}^0 & J_{1,11}^0 & J_{1,12}^0 & J_{1,13}^0 & J_{1,14}^0 & J_{1,15}^0 & J_{1,16}^0 & \leftarrow \Delta P_2^{(1)}  \\ &J_{2,1}^0 & J_{2,2}^0 & J_{2,3}^0 & J_{2,4}^0 & J_{2,5}^0 & J_{2,6}^0 & J_{2,7}^0 & J_{2,8}^0 & J_{2,9}^0 & J_{2,10}^0 & J_{2,11}^0 & J_{2,12}^0 & J_{2,13}^0 & J_{2,14}^0 & J_{2,15}^0 & J_{2,16}^0 & \leftarrow \Delta Q_2^{(1)} \\ &J_{3,1}^0 & J_{3,2}^0 & J_{3,3}^0 & J_{3,4}^0 & J_{3,5}^0 & J_{3,6}^0 & J_{3,7}^0 & J_{3,8}^0 & J_{3,9}^0 & J_{3,10}^0 & J_{3,11}^0 & J_{3,12}^0 & J_{3,13}^0 & J_{3,14}^0 & J_{3,15}^0 & J_{3,16}^0 & \leftarrow \Delta P_3^{(1)} \\ &  J_{4,1}^0 & J_{4,2}^0 & J_{4,3}^0 & J_{4,4}^0 & J_{4,5}^0 & J_{4,6}^0 & J_{4,7}^0 & J_{4,8}^0 & J_{4,9}^0 & J_{4,10}^0 & J_{4,11}^0 & J_{4,12}^0 & J_{4,13}^0 & J_{4,14}^0 & J_{4,15}^0 & J_{4,16}^0 & \leftarrow \Delta Q_3^{(1)} \\ & J_{5,1}^0 & J_{5,2}^0 & J_{5,3}^0 & J_{5,4}^0 & J_{5,5}^0 & J_{5,6}^0 & J_{5,7}^0 & J_{5,8}^0 & J_{5,9}^0 & J_{5,10}^0 & J_{5,11}^0 & J_{5,12}^0 & J_{5,13}^0 & J_{5,14}^0 & J_{5,15}^0 & J_{5,16}^0 & \leftarrow \Delta P_4^t \\ & J_{6,1}^0 & J_{6,2}^0 & J_{6,3}^0 & J_{6,4}^0 & J_{6,5}^0 & J_{6,6}^0 & J_{6,7}^0 & J_{6,8}^0 & J_{6,9}^0 & J_{6,10}^0 & J_{6,11}^0 & J_{6,12}^0 & J_{6,13}^0 & J_{6,14}^0 & J_{6,15}^0 & J_{6,16}^0 & \leftarrow \Delta Q_4^t \\& J_{7,1}^0 & J_{7,2}^0 & J_{7,3}^0 & J_{7,4}^0 & J_{7,5}^0 & J_{, 6}^0 & J_{7,7}^0 & J_{7,8}^0 & J_{7,9}^0 & J_{7,10}^0 & J_{7,11}^0 & J_{7,12}^0 & J_{7,13}^0 & J_{7,14}^0 & J_{7,15}^0 & J_{7,16}^0 & \leftarrow \Delta I_{r, 1}^{(5)} \\ &J_{8,1}^0 & J_{8,2}^0 & J_{8,3}^0 & J_{8,4}^0 & J_{8,5}^0 & J_{8,6}^0 & J_{8,7}^0 & J_{8,8}^0 & J_{8,9}^0 & J_{8,10}^0 & J_{8,11}^0 & J_{8,12}^0 & J_{8,13}^0 & J_{8,14}^0 & J_{8,15}^0 & J_{8,16}^0 & \leftarrow \Delta I_{i, 1}^{(5)} \\& J_{9,1}^0 & J_{9,2}^0 & J_{9,3}^0 & J_{9,4}^0 & J_{9,5}^0 & J_{9,6}^0 & J_{9,7}^0 & J_{9,8}^0 & J_{9,9}^0 & J_{9,10}^0 & J_{9,11}^0 & J_{9,12}^0 & J_{9,13}^0 & J_{9,14}^0 & J_{9,15}^0 & J_{9,16}^0 & \leftarrow \Delta I_{r, 2}^{(5)} \\& J_{10,1}^0 & J_{10,2}^0 & J_{10,3}^0 & J_{10,4}^0 & J_{10,5}^0 & J_{10,6}^0 & J_{10,7}^0 & J_{10,8}^0 & J_{10,9}^0 & J_{10,10}^0 & J_{10,11}^0 & J_{10,12}^0 & J_{10,13}^0 & J_{10,14}^0 & J_{10,15}^0 & J_{10,16}^0 & \leftarrow \Delta I_{i, 2}^{(5)}\\& J_{11,1}^0 & J_{11,2}^0 & J_{11,3}^0 & J_{11,4}^0 & J_{11,5}^0 & J_{11,6}^0 & J_{11,7}^0 & J_{9,8}^0 & J_{11,9}^0 & J_{11,10}^0 & J_{11,11}^0 & J_{11,12}^0 & J_{11,13}^0 & J_{11,14}^0 & J_{11,15}^0 & J_{11,16}^0 & \leftarrow \Delta I_{r, 3}^{(5)}\\ & J_{12,1}^0 & J_{12,2}^0 & J_{12,3}^0 & J_{12,4}^0 & J_{12,5}^0 & J_{12,6}^0 & J_{12,7}^0 & J_{12,8}^0 & J_{12,9}^0 & J_{12,10}^0 & J_{12,11}^0 & J_{12,12}^0 & J_{12,13}^0 & J_{12,14}^0 & J_{12,15}^0 & J_{12,16}^0 & \leftarrow \Delta I_{i, 3}^{(5)} \\& J_{13,1}^0 & J_{13,2}^0 & J_{13,3}^0 & J_{13,4}^0 & J_{13,5}^0 & J_{13,6}^0 & J_{13,7}^0 & J_{13,8}^0 & J_{13,9}^0 & J_{13,10}^0 & J_{13,11}^0 & J_{13,12}^0 & J_{13,13}^0 & J_{13,14}^0 & J_{13,15}^0 & J_{13,16}^0& \leftarrow \Delta I_{r, 4}^{(5)}\\ & J_{14,1}^0 & J_{14,2}^0 & J_{14,3}^0 & J_{14,4}^0 & J_{14,5}^0 & J_{14,6}^0 & J_{14,7}^0 & J_{14,8}^0 & J_{14,9}^0 & J_{14,10}^0 & J_{14,11}^0 & J_{14,12}^0 & J_{14,13}^0 & J_{14,14}^0 & J_{14,15}^0 & J_{14,16}^0 & \leftarrow \Delta I_{i, 4}^{(5)} \\& J_{15,1}^0 & J_{15,2}^0 & J_{15,3}^0 & J_{15,4}^0 & J_{15,5}^0 & J_{15,6}^0 & J_{15,7}^0 & J_{15,8}^0 & J_{15,9}^0 & J_{15,10}^0 & J_{15,11}^0 & J_{15,12}^0 & J_{15,13}^0 & J_{15,14}^0 & J_{15,15}^0 & J_{15,16}^0 & \leftarrow \Delta I_{r, 4}^{(1)} \\& J_{16,1}^0 & J_{16,2}^0 & J_{16,3}^0 & J_{16,4}^0 & J_{16,5}^0 & J_{16,6}^0 & J_{16,7}^0 & J_{16,8}^0 & J_{16,9}^0 & J_{16,10}^0 & J_{16,11}^0 & J_{16,12}^0 & J_{16,13}^0, & J_{16,14}^0 & J_{16,15}^0 &J_{16,16}^0 & \leftarrow \Delta I_{i, 4}^{(1)}  \end{array}\right.

The top row, which is not part of the Jacobian, lists the variables:

\delta_2^{(1)},\left|\widetilde{V}_2^{(1)}\right|, \delta_3^{(1)},\left|\widetilde{V}_3^{(1)}\right|, \delta_4^{(1)},\left|\widetilde{V}_4^{(1)}\right|, \delta_1^{(5)},\left|\widetilde{V}_1^{(5)}\right|, \delta_2^{(5)},\left|\widetilde{V}_2^{(5)}\right|, \delta_3^{(5)},\left|\widetilde{V}_3^{(5)}\right|, \delta_4^{(5)},\left|\widetilde{V}_4^{(5)}\right|, \alpha, \beta

and the right-hand side column, which is not part of the Jacobian, lists the mismatch quantities that must be satisfied:

\left[\Delta P_2^{(1)}, \Delta Q_2^{(1)}, \Delta P_3^{(1)}, \Delta Q_3^{(1)}, \Delta P_4^t, \Delta Q_4^t, \Delta I_{r, 1}^{(5)}, \Delta I_{i, 1}^{(5)}, \Delta I_{r, 2}^{(5)}, \Delta I_{i, 2}^{(5)}, \Delta I_{r, 3}^{(5)}, \Delta I_{i, 3}^{(5)}, \Delta I_{r, 4}^{(5)}, \Delta I_{i, 4}^{(5)}, \Delta I_{r, 4}^{(1)}, \Delta I_{i, 4}^{(1)}\right]^t .

These two identifications help in defining the partial derivatives of the Jacobian. For example,

\begin{gathered} J_{3,5}^0=\frac{\partial\left(\Delta P_3^{(1)}\right)}{\partial\left(\delta_4^{(1)}\right)}, J_{3,10}^0=\frac{\partial\left(\Delta P_3^{(1)}\right)}{\partial\left(\Delta V_2^{(5)}\right)} \\ J_{8,5}^0=\frac{\partial\left(\Delta I_{i, 1}^{(5)}\right)}{\partial\left(\delta_4^{(1)}\right)}, J_{8,10}^0=\frac{\partial\left(\Delta I_{i, 1}^{(5)}\right)}{\partial\left(\Delta V_2^{(5)}\right)} \\ J_{9,11}^0=\frac{\partial\left(\Delta I_{r, 2}^{(5)}\right)}{\partial\left(\delta_3^{(5)}\right)}, \text { and } J_{12,16}^0=\frac{\partial\left(\Delta I_{i, 3}^{(5)}\right)}{\partial(\beta)} \end{gathered}

In the solution below submatrices are defined, which is an alternative way of defining the Jacobian entries.

Step #4 of Harmonic Load Flow (continued). Evaluate the Jacobian matrix \bar{J} and compute \Delta \bar{U}^0 . The Jacobian matrix has the following form (\left(\overline{0}_{n \times m}\right. denotes an n by m zero submatrix with zero entries):

\bar{J}=\left|\begin{array}{ccc} \bar{J}^{(1)} & \bar{J}^{(5)} & \overline{0}_{6,2} \\ & & \overline{0}_{6,2} \\ \bar{G}^{(5,1)} & \bar{Y}^{(5,5)}+\bar{G}^{(5,5)} & \bar{H}^{(5)} \\ \bar{Y}^{(1,1)}+\bar{G}^{(1,1)} & \bar{G}^{(1,5)} & \bar{H}^{(1)} \end{array}\right| .

The Jacobian submatrix for the fundamental is

\vec{J}^{(1)}=\left|\begin{array}{cccccc} 61.68 & 52.932 & -11.764 & -2.944 & 0 & 0 \\ -52.94 & 61.945 & 2.944 & -11.764 & 0 & 0 \\ -11.764 & -2.944 & 51.772 & 22.917 & -40.0076 & -19.98 \\ 2.944 & -11.764 & -22.926 & 51.773 & 19.982 & -40.0076 \\ 0 & 0 & -40.0076 & -19.982 & 80.015 & 39.961 \\ 0 & 0 & 19.982 & -40.0076 & -39.963 & 80 \end{array}\right| .

The Jacobian submatrix for the 5th harmonic is

\bar{J}^{(5)}=\left[\begin{array}{ccccccccc}&&&{\overline{0}_{4 \times 8}} \\ -0.099 & -0.099 & 0 & 0 & -0.099 & -0.09 & 0.198 & 0.198 \\ 0.010 & -0.099 & 0 & 0 & 0.010 & -0.99 & -0.020 & 1.98 \end{array}\right]

Also

\begin{gathered} \bar{Y}^{(1,1)}=\left|\begin{array}{ccccccc} 0 & 0 & -39.889 & -19.89 & 79.81 & 39.73 \\ 0 & 0 & -19.81 & 40.06 & 39.56 & -80.14 \end{array}\right| \\ \bar{Y}^{(5,5)}=\left|\begin{array}{cccccccc} 202.91 & 4.84 & -1.92 & -3.85 & 0 & 0 & -0.99 & -0.99 \\ 0.48 & -2029.1 & -0.39 & 19.23 & 0 & 0 & -0.10 & 9.90 \\ -1.92 & -3.846 & 2.17 & 3.97 & -0.25 & -0.13 & 0 & 0 \\ -0.39 & 19.23 & 0.40 & -21.73 & -0.01 & 2.45 & 0 & 0 \\ 0 & 0 & -0.25 & -0.13 & 1.24 & 1.12 & -0.99 & -0.99 \\ 0 & 0 & -0.01 & 2.49 & 0.11 & -12.40 & -0.10 & 9.90 \\ -0.99 & -0.99 & 0 & 0 & -0.99 & -0.99 & 1.98 & 1.98 \\ -0.01 & 9.90 & 0 & 0 & -0.01 & 9.90 & 0.20 & -19.80 \end{array}\right| . \end{gathered}

In this example, \bar{H}^{(1)} \text { and } \bar{H}^{(5)} are zero submatrices since there are no nonlinear device variables defined for the system of Fig. E7.14.1. However, setting \bar{H}^{(1)} \text { and } \bar{H}^{(5)} to zero introduces two columns of zeros in the Jacobian matrix, which makes it singular. In order to avoid this situation, \bar{H}^{(1)} \text { and } \bar{H}^{(5)} are set to random matrices. Note that the solution does not depend on the values of these submatrices.
In order to compute \bar{G}^{(1,1)} \text { and } \bar{G}^{(1,5)} \text {, we need to differentiate } G_{r, 4}^{(1)} \text { and } G_{i, 4}^{(1)} as follows:

\begin{aligned} & \frac{\partial G_{r, 4}^{(1)}}{\partial \delta_4^{(1)}}=\frac{P_4^{(1)} \cos \gamma_4^{(1)} \tan \left(\delta_4^{(1)}-\gamma_4^{(1)}\right)}{V_4^{(1)} \cos \left(\delta_4^{(1)}-\gamma_4^{(1)}\right)}=0.00167 \\ & \frac{\partial G_{r, 4}^{(1)}}{\partial V_4^{(1)}}=-\frac{P_4^{(1)} \cos \gamma_4^{(1)}}{\left(V_4^{(1)}\right)^2 \cos \left(\delta_4^{(1)}-\gamma_4^{(1)}\right)}=-0.252 \\ & \frac{\partial G_{i, 4}^{(1)}}{\partial \delta_4^{(1)}}=\frac{P_4^{(1)} \sin \gamma_4^{(1)} \tan \left(\delta_4^{(1)}-\gamma_4^{(1)}\right)}{V_4^{(1)} \cos \left(\delta_4^{(1)}-\gamma_4^{(1)}\right)}=-0.0000112 \\ & \frac{\partial G_{i, 4}^{(1)}}{\partial V_4^{(1)}}=-\frac{P_4^{(1)} \sin \gamma_4^{(1)}}{\left(V_4^{(1)}\right)^2 \cos \left(\delta_4^{(1)}-\gamma_4^{(1)}\right)}=0.00169 \end{aligned}

The partial derivatives of G_{r, 4}^{(1)} \text { and } G_{i, 4}^{(1)} \text { with respect to } V_4^{(5)} \text { and } \delta_4^{(5)} are zero. Therefore, \bar{G}^{(1,5)} \text { is a } 2 \times 8 submatrix of zeros and

\bar{G}^{(1,1)}=-\left|\begin{array}{ccc}  & 0.10026 & -0.2517 \\ \overline{0}_{2 \times 4} &&\\ & -0.0405 & 0.25415 \end{array}\right| .

In order to compute \bar{G}^{(5,1)} \text { and } \bar{G}^{(5,5)} \text {, we need to differentiate } \bar{G}_{r, 4}^{(5)} \text { and } \bar{G}_{i, 4}^{(5)} as follows:

\begin{aligned} & \frac{\partial G_{r, 4}^{(5)}}{\partial \delta_4^{(1)}}=-0.9\left(V_4^{(1)}\right)^3 \sin \left(3 \delta_4^{(1)}\right)=0.00896 \\ & \frac{\partial G_{r, 4}^{(5)}}{\partial V_4^{(1)}}=0.9\left(V_4^{(1)}\right)^2 \cos \left(3 \delta_4^{(1)}\right)=0.893 \\ & \frac{\partial G_{i, 4}^{(5)}}{\partial \delta_4^{(1)}}=0.9\left(V_4^{(1)}\right)^3 \cos \left(3 \delta_4^{(1)}\right)=0.8894 \\ & \frac{\partial G_{i, 4}^{(5)}}{\partial V_4^{(1)}}=0.9\left(V_4^{(1)}\right)^2 \sin \left(3 \delta_4^{(1)}\right)=-0.009 . \end{aligned}

Also

\begin{aligned} & \frac{\partial G_{r, 4}^{(5)}}{\partial \delta_4^{(5)}}=-0.9\left(V_4^{(5)}\right)^2 \sin \left(3 \delta_4^{(5)}\right)=0.00 \\ & \frac{\partial G_{r, 4}^{(5)}}{\partial V_4^{(5)}}=0.6 V_4^{(5)} \cos \left(3 \delta_4^{(5)}\right)=0.06 \\ & \frac{\partial G_{i, 4}^{(5)}}{\partial \delta_4^{(5)}}=0.9\left(V_4^{(5)}\right)^2 \cos \left(3 \delta_4^{(5)}\right)=0.009 \\ & \frac{\partial G_{i, 4}^{(5)}}{\partial V_4^{(5)}}=0.6 V_4^{(5)} \sin \left(3 \delta_4^{(5)}\right)=0.00 \end{aligned}

Therefore,

\bar{G}^{(5.1)}=\left|\begin{aligned} & \overline{0}_{6 \times 8} && \\ & &0.00896 \quad 0.893 \\  \overline{0}_{2 \times 6} &&&\\ && 0.8894-0.009  \end{aligned}\right|

 

\bar{G}^{(5.5)}=\left|\begin{aligned}  &\overline{0}_{6 \times 8} &&\\ && 0 \quad 0.06 \\  \overline{0}_{2 \times 6}&&& \\& & 0.009 \quad 0 \\ \end{aligned}\right|

The Jacobian matrix is

\left|\begin{array}{ccccccccccccccccc} -61.57 & 52.71 & -11.70 & -2.90 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -52.79 & 61.52 & 2.89 & -11.74 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -11.69 & -2.69 & 51.37 & 22.86 & -39.71 & -19.90 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2.95 & -11.72 & -22.77 & 51.58 & 19.82 & -39.87 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -39.66 & -19.94 & 79.45 & 39.59 & -0.099 & -0.099 & 0 & 0 & -0.099 & -0.099 & 0.198 & 0.198 & 0 & 0 \\ 0 & 0 & 19.86 & -39.83 & -39.93 & 79.58 & 0.010 & -0.99 & 0 & 0 & 0.010 & -0.99 & -0.020 & 1.98 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 202.9 & 4.84 & -1.92 & -3.85 & 0 & 0 & -0.99 & -0.99 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.48 & -2029 & -0.39 & 19.23 & 0 & 0 & -0.10 & 9.90 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1.92 & -3.846 & 2.17 & 3.97 & -0.25 & -0.13 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -0.39 & 19.23 & 0.40 & -21.73 & -0.01 & 2.45 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.25 & -0.13 & 1.24 & 1.12 & -0.99 & -0.99 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.01 & 2.49 & 0.11 & -12.40 & -0.10 & 9.90 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.009 & 0.893 & -0.99 & -0.99 & 0 & 0 & -0.99 & -0.99 & 1.98 & 2.04 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.889 & -0.009 & -0.01 & 9.90 & 0 & 0 & -0.01 & 9.90 & 0.201 & -19.80 & 0 & 0 \\ 0 & 0 & -39.89 & -19.89 & 79.91 & 39.48 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & -19.81 & 40.06 & 39.81 & -80.04 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 4 \end{array}\right|

Related Answered Questions

Question: 7.AE.16

Verified Answer:

Step #3 of Harmonic Load Flow. Evaluation of the m...
Question: 7.AE.10

Verified Answer:

\begin{gathered} J_{11}=\frac{\partial \Del...