Holooly Plus Logo

Question 13.SQ.4: (a) The annual maxima for the River Warleggan at Trengoffe d......

(a) The annual maxima for the River Warleggan at Trengoffe during the water years 1969 – 80 are shown below. Using only these data, the Gringorten equation (13.4) and log-probability paper, determine Q_{5}, Q_{20}  and  Q_{100}. Are these values significantly different from those in Example 13.6a? (b) Repeat the above analysis but this time using the full 1969 – 94 record from Table 13.7 and below. What do you deduce about the importance of a long record? (c) Calculate the values of QMED obtained from the 1969–80 data below and the full 1969 – 94 record. What are the percentage differences compared to the 8.077 m³/s value in Table 13.7? (d) Using all of the 1969 – 94 data, calculate the values of Q_{T}/QMED and y so they can be combined with the data in Table 13.8.

\text { Gringorten: } \quad P=\frac{r  –  0.44}{N + 0.12} (13.4)

\begin{array}{llcccr} \text { Water year } & {\text { Date }} & Q\left( m ^3 / s \right) & \text { Water year } & {\text { Date }} & Q\left( m ^3 / s \right) \\ 1969 & \text { 17 Jan } 1970 & 14.869 & 1975 & \text { 29 Jan } 1976 & 13.907 \\ 1970 & \text { 12 Jan } 1971 & 6.107 & 1976 & \text { 3 Feb 1977 } & 3.047 \\ 1971 & \text { 30 Nov } 1971 & 8.493 & 1977 & \text { 9 Dec } 1977 & 10.085 \\ 1972 & \text { 6 Aug } 1973 & 8.493 & 1978 & \text { 22 Dec } 1978 & 5.167 \\ 1973 & \text { 15 Nov } 1973 & 15.519 & 1979 & \text { 27 Dec 1979 } & 23.914 \\ 1974 & \text { 13 Nov } 1974 & 12.973 & 1980 & \text { 16 Nov 1980 } & 7.494 \end{array}

Table 13.7 River Warleggan at Trengoffe – recorded data and annual maximum frequency analysis [Data from the FEH CD-ROM courtesy of the Institute of Hydrology, Wallingford]

QMED = (8.629 + 7.525)/2 = 8.077 m³/s.

\underline{Recorded  data} \underline{Prior  to  development,  ranked  data  and  \%  probability} \underline{Post  development}
Water

year

Date Q

m³/s

Rank

r

Water

year

Q_{T}

m³/s

p%

Eqn (13.4)

1.35Q_{T}

m³/s

1981 20 Dec 1981 17.914 1 1981 17.914 3.97 24.184
1982 6 Nov 1982 10.085 2 1992 13.843 11.05 18.688
1983 19 Dec 1983 4.651 3 1985 12.973 18.13 17.514
1984 27 Jan 1985 5.673 4 1982 10.085 25.21 13.615
1985 24 Aug 1986 12.973 5 1986 9.813 32.29 13.248
1986 10 Dec 1986 9.813 6 1987 9.543 39.38 12.883
1987 1 Feb 1988 9.543 7 1988 8.629 46.46 11.649
1988 24 Feb 1989 8.629 8 1994 7.525 53.54 10.159
1989 14 Feb 1990 6.239 9 1993 7.074 60.62 9.55
1990 1 Jan 1991 4.936 10 1989 6.239 67.71 8.423
1991 31 Oct 1991 3.807 11 1984 5.673 74.79 7.659
1992 18 Dec 1992 13.843 12 1990 4.936 81.87 6.664
1993 24 Jan 1994 7.074 13 1983 4.651 88.95 6.279
1994 27 Jan 1995 7.525 14 1991 3.807 96.03 5.139

 

Table 13.8 St Neot at Craigshill Wood, Cornwall – recorded data and growth curve [Data courtesy of the Institute of Hydrology, Wallingford]

QMED = (8.712 + 7.996)/2 = 8.354 m³/s.

Recorded data Ranked data for QMED and growth curve
Water year Date Q

m³/s

Water year Q_{T}

m³/s

Rank

r

Q_{T}/QMED y

Eqn (13.5)

1971 29 Nov 1971 8.712 1979 21.081 1 2.52 3.051
1972 6 Aug 1973 5.319 1981 14.372 2 1.72 1.982
1973 17 Sep 1974 13.094 1973 13.094 3 1.57 1.439
1974 13 Nov 1974 10.823 1974 10.823 4 1.30 1.056
1975 29 Jan 1976 7.996 1982 9.352 5 1.12 0.751
1976 14 Oct 1976 5.832 1971 8.712 6 1.04 0.488
1977 9 Dec 1977 7.699 1975 7.996 7 0.96 0.249
1978 23 Dec 1978 6.009 1977 7.699 8 0.92 0.023
1979 27 Dec 1979 21.081 1980 7.504 9 0.90 – 0.203
1980 9 Mar 1981 7.504 1978 6.009 10 0.72 – 0.441
1981 19 Dec 1981 14.372 1976 5.832 11 0.70 – 0.718
1982 5 Nov 1982 9.352 1972 5.319 12 0.64 – 1.123
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The ranked data are shown in Table STQ13.4a, along with the P % values calculated from equation (13.4). The data are plotted as Fig. STQ13.4a. The Q_T values equivalent to P = 20%, 5% and 1% give Q_{5}, Q_{20}  and  Q_{100} = 15.2 m³/s, 24.0 m³/s and 36.0 m³/s respectively. Example 13.6 gave much lower values (11.8 m³/s, 17.3 m³/s, 23.8 m³/s).

(b) Repeating the above analysis but using all 26 years of record results in Table STQ13.4b and Fig. STQ13.4b. The data show less scatter and plot easier. This time Q_{5}, Q_{20}  and  Q_{100} = 13.0 m³/s, 19.6 m³/s and 28.0 m³/s. These are between the two values obtained from the short records. It may be surmised that the 1969–80 record contains larger flood peaks than the other (see the values of QMED below). This is not unexpected: weather often fluctuates in cycles, such as a sequence of wetter than average years. A long record averages these fluctuations out and is more reliable.

(c) Using the 1969 – 80 record in Table STQ13.4a, QMED = (10.085 + 8.493)/2 = 9.289 m³/s.

From the 1981 – 94 record in Table 13.7, QMED = 8.077 m³/s.

Using the full 1969 – 94 record in Table STQ13.4b, QMED = (8.629 + 8.493)/2 = 8.561 m³/s.

This confirms the statement above that the first part of the record contained larger floods, and again illustrates the need for a long record. The largest percentage difference is 100 × (9.289 – 8.077)/8.077 = 15%. The other difference is 6%.

(d) The values are listed in Table STQ13.4b. They are included in Fig. 13.9b in the text.

Table STQ13.4a
Water year Q_{T} Rank r P%
1979 23.914 1 4.6
1973 15.519 2 12.9
1969 14.869 3 21.1
1975 13.907 4 29.4
1974 12.973 5 37.6
1977 10.085 6 45.9
1972 8.493 7 54.1
1971 8.493
1980 7.494 9 70.6
1970 6.107 10 78.9
1978 5.167 11 87.1
1976 3.047 12 95.4

 

Table STQ13.4b
Water year Q_{T} Rank r P % Q_{T} /QMED y
1979 23.914 1 2.14 2.793 3.832
1981 17.914 2 5.97 2.093 2.787
1973 15.519 3 9.8 1.813 2.272
1969 14.869 4 13.63 1.737 1.921
1975 13.907 5 17.46 1.624 1.651
1992 13.843 6 21.29 1.617 1.43
1974 12.973 7 25.11 1.515 1.241
1985 12.973
1977 10.085 9 32.77 1.178 0.924
1982 10.085
1986 9.813 11 40.43 1.146 0.658
1987 9.543 12 44.26 1.115 0.537
1988 8.629 13 48.09 1.008 0.422
1971 8.493 14 51.91 0.992 0.312
1972 8.493
1994 7.525 16 59.57 0.879 0.099
1980 7.494 17 63.40 0.875 – 0.005
1993 7.074 18 67.23 0.826 – 0.109
1989 6.239 19 71.06 0.729 – 0.215
1970 6.107 20 74.89 0.713 – 0.323
1984 5.673 21 78.71 0.663 – 0.436
1978 5.167 22 82.54 0.604 – 0.557
1990 4.936 23 86.37 0.577 – 0.69
1983 4.561 24 90.20 0.543 – 0.843
1991 3.807 25 94.03 0.445 – 1.036
1976 3.047 26 97.86 0.356 – 1.346
Figure 13.4a
Figure 13.4b
Figure 13.9

Related Answered Questions