Holooly Plus Logo

Question 16.13: A uniform thin-walled beam ABD of open cross-section (Fig. P......

A uniform thin-walled beam ABD of open cross-section (Fig. P.16.13) is simply supported at points B and D with its web vertical. It carries a downward vertical force W at the end A in the plane of the web. Derive expressions for the vertical and horizontal components of the deflection of the beam midway between the supports B and D. The wall thickness t and Young’s modulus E are constant throughout.

Answer:      u=0.186W l^{3}/E a^{3}t,\quad ν=0.177W l^{3}/E a^{3}t.

p.16.13
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Eqs (16.28), the horizontal component of deflection, u, is given by

\left\{\begin{matrix} u^{\prime \prime} \\ν^{\prime \prime}\end{matrix} \right\} =\frac{-1}{E\left(I_{xx}I_{yy}-I^{2}_{xy}\right) } \begin{bmatrix} -I_{xy} & I_{xx} \\ I_{yy} & -I_{xy} \end{bmatrix} \left\{\begin{matrix} M_{x} \\ M_{y} \end{matrix} \right\}           (16.28)

 

\displaystyle u^{\prime\prime}=\frac{M_{x}I_{x y}-M_{y}I_{x x}}{E\left(I_{x x}I_{y y}-I_{x y}^{2}\right)}    (i)

in which, for the span BD, referring to Fig. P.16.13, M_{x}=-R_{\mathrm{D}}z,\,M_{y}=0, where R_{\mathrm{{D}}} is the vertical reaction at the support at D. Taking moments about B,

R_{\mathrm{D}}2l+W l=0

so that

R_{\mathrm{D}}=-W/2\ \ (\mathrm{downward})

Eq. (i) then becomes

u^{\prime\prime}={\frac{W I_{x y}}{2E\left(I_{xx}I_{y y}-I_{x y}^{2}\right)}}z          (ii)

From Fig. P.16.13,

I_{x x}={\frac{t(2a)^{3}}{12}}+2a t(a)^{2}+2\left[{\frac{t(a/2)^{3}}{12}}+t{\frac{a}{2}}\left({\frac{3a}{4}}\right)^{2}\right]={\frac{13a^{3}t}{4}}

 

I_{y y}={\frac{t(2a)^{3}}{12}}+2{\frac{a}{2}}t(a)^{2}={\frac{5a^{3}t}{3}}

 

I_{x y}={\frac{a}{2}}t(-a)\left({\frac{3a}{4}}\right)+a t\Bigl(-{\frac{a}{2}}\Bigr)(a)+{\frac{a}{2}}t(a)\biggl(-{\frac{3a}{4}}\biggr)+a t\Bigl({\frac{a}{2}}\Bigr)(-a\Bigr)=-{\frac{7a^{3}t}{4}}

Equation (ii) then becomes

u^{\prime\prime}=-{\frac{42W z}{113E a^{3}t}}          (iii)

Integrating Eq. (iii) with respect to z

u^{\prime}=-{\frac{21W}{113E a^{3}t}}z^{2}+A

and

u=-{\frac{7W}{113E a^{3}t}}z^{3}+A z+B      (iv)

When z = 0, u = 0 so that B = 0. Also u = 0 when z = 2l, which gives

A=-{\frac{28W l}{113E a^{3}t}}

Then

u={\frac{7W}{113E a^{3}t}}{\bigl(}-z^{3}+4l^{2}z{\bigr)}          (v)

At the mid-span point where z=l, Eq. (v) gives

u={\frac{0.186Wl^{3}}{E a^{3}t}}

Similarly,

v={\frac{0.177W l^{3}}{E a^{3}t}}

Related Answered Questions