Holooly Plus Logo

Question 16.18: The beam section shown in Fig. P.16.18 is subjected to a tem......

The beam section shown in Fig. P.16.18 is subjected to a temperature change which varies with y such that T=T_{0}y/2a. Determine the corresponding changes in the stress resultants. Young’s modulus for the material of the beam is E, while its coefficient of linear expansion is α.

Answer:        N_{T}=0,\;M_{x T}=5E\alpha 7a^{2}t\,T_{0}/3,\;M_{y T}=E \alpha\ a^{2}t\,T_{0}/6

p.16.18
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Referring to Fig. S.16.18 and taking moments of areas about the upper flange,

(a t+2a t){\overline{{y}}}=2a t a

which gives

{\overline{{y}}}={\frac{2}{3}}a

Now taking moments of areas about the vertical web,

3a t\overline{{x}}=a t\frac{a}{2}

so that

{\bar{x}}={\frac{a}{6}}

From Eq. (16.51),

M_{x T}=\Sigma E \alpha\Delta T{\bar{y}}_{i}A_{i}            (16.51)

 

N_{T}=\int_{A}^{}{E\alpha{\frac{T_{0}y}{2a}}t\ \mathrm{d}s={\frac{E\alpha T_{0}t}{2a}}\int_{A}^{}{yds} }

But t\int_{A}^{}{y} ds is the first moment of area of the section about the centroidal axis Cx, i.e., t\int_{A}^{}{y} ds = 0.
Therefore,

N_{T}=0

From Eq. (16.52),

M_{y T}=\Sigma E \alpha\Delta T\bar{x}_{i}A_{i}          (16.52)

 

M_{xT}=\int_{A}^{}{E\alpha{\frac{T_{0}}{2a}}t y^{2}\,\mathrm{d}s={\frac{E\alpha T_{0}}{2a}}\int_{A}^{}{ty^{2}ds} }

But

\int_{A}^{}{ty^{2}\,\mathrm{d}s=I_{x x}=a t\left(\frac23a\right)^{2}+t\frac{(2a)^{3}}3+2a t\bigl(\frac{a}{3}\bigr)^{2}}

i.e.,

I_{x x}={\frac{10a^{3}t}{3}}

Therefore,

M_{x T}={\frac{5E\alpha a^{2}t T_{0}}{3}}

From Eq. (16.53),

N_{T}=\int_{A}E \alpha{\Delta T}(x,y)t\,{\mathrm{d}}s          (16.53)

 

M_{yT}=\int_{A}^{}{E\alpha{\frac{T_{0}}{2a}}t x y\ \mathrm{d}s={\frac{E\alpha T_{0}}{2a}}\int_{A}^{}{txyds} }

But

\int_{A}^{}{t x y\mathrm{d}s=I_{x y}=a t\left({\frac{a}{3}}\right)\left({\frac{2}{3}}a\right)+2a t\left(-{\frac{a}{6}}\right)\left(-{\frac{a}{3}}\right)}

i.e.,

I_{xy}={\frac{a^{3}t}{2}}

Then

M_{y T}={\frac{E\alpha a^{2}t T_{0}}{6}}
s.16.18

Related Answered Questions