Question 13.1: Air at 1 bar and 15°C enters a three stage axial compressor ......

Air at 1 bar and 15°C enters a three stage axial compressor with a velocity of 120 m/s. There are no IGVs and constant axial velocity is assumed throughout. In each stage, the rotor turning angle is 25°. The annular flow passages are shaped in such a way that the mean blade radius is 20 cm everywhere. The rotor speed is 9000 rpm. The polytropic efficiency is constant at 0.9. The blade height at the inlet is 5 cm.
Draw the velocities diagram and calculate
1. Specific work for each stage
2. The mass flow rate
3. The power necessary to run the compressor
4. Stage pressure ratios
5. The overall compressor pressure ratio
6. The blade height at the exit from the third stage
7. The degree of reaction of the first stage

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The given data are P01=1 bar,rm=0.2 m,N=9000 rpm,ηS=0.9,β1β2P_{01}=1 \text{ bar}, r_{\text{m}}=0.2 \text{ m},N=9000 \text{ rpm}, \eta_{\text{S}}=0.9, \beta_1-\beta_2 = 25°, h = 0.05 m, Number of stages = 3, and C1Ca1=120 m/sC_1 \equiv C_{\text{a}1}=120 \text{ m/s}

1. Since the flow is axial, α1=0,Cu1=0, and ΔCuCu2\alpha_1=0, C_{\text{u}1}=0 ,\text{ and } \Delta C_{\text{u}} \equiv C_{\text{u}2} . A typical velocity triangle for this case is shown in Figure 13.15.

If the inlet total temperature is T01=15+273=288 K with Um=2πrmN=188.496 m/sT_{01}=15+273=288 \text{ K with }U_{\text{m}}=2\pi r_{\text{m}}N=188.496 \text{ m/s}, then

tanβ1=UCa1β1=57.52=constant for all stagesβ2=β125=32.52=constant also for all stages.\tan \beta_1=\frac{U}{C_{\text{a}1}} \\ \beta_1=57.52^\circ=\text{constant for all stages} \\ \beta_2=\beta_1-25=32.52^\circ= \text{constant also for all stages}.

Since

tanβ2=UCu2Ca2\tan \beta_2=\frac{U-C_{\text{u}2}}{C_{\text{a}2}}

then Cu2=111.989 m/sΔCuC_{\text{u}2}=111.989 \text{ m/s} \equiv \Delta C_{\text{u}} .
The axial compressor is composed of three identical stages as for the three stages:

1. The flow enters axially.
2. The rotor turning angle is the same, β1β2\beta_1-\beta_2 = constant, thus ΔCu\Delta C_{\text{u}} = constant.
3. The polytropic efficiency is constant.
4. The compressor has a constant mean radius layout UmU_{\text{m}} = constant.

Thus, the temperature rise per stage and the specific work are constant.
The specific work per stage is wS=UΔCu\text{w}_{\text{S}}=U \Delta C_{\text{u}} = 21.11 kJ/kg Constant for all stages [or wS=UΔCu=UCa(tanβ1tanβ2)\text{w}_{\text{S}}=U \Delta C_{\text{u}}=UC_{\text{a}}(\tan \beta_1 – \tan \beta_2) = 21.11 kJ/kg].
The specific work for the three-stage compressor is

Ws=3ws=3×21.11=63.33 kJ/kgW_{\text{s}}=3\text{w}_{\text{s}}=3 \times 21.11=63.33 \text{ kJ/kg}

2. The mass flow rate may be calculated from the relation m˙=ρ1Ca1A1\dot{m}=\rho_1 C_{\text{a}1}A_1 .
At the compressor inlet, the static temperature

T1=T01C122Cp=280.836 KT_1=T_{01}-\frac{C_1^2}{2 Cp} =280.836 \text{ K}

and the static pressure

P1=P01(T01/T1)γ/(γ1)=0.916 barP_1=\frac{P_{01}}{(T_{01}/T_1)^{\gamma/(\gamma-1)}} =0.916 \text{ bar}

The density

ρ1=P1RT1=1.136 kg/m3\rho_1=\frac{P_1}{RT_1} =1.136 \text{ kg/m}^3

The annulus area A=2πrmhA= 2\pi r_{\text{m}}h = 0.0628 m²

m˙=ρ1Ca1A=8.565 kg/s\therefore \dot{m}= \rho_1 C_{\text{a}1}A=8.565 \text{ kg/s}

3. The power necessary to drive the compressor is then

Power=m˙wS=180.81 kW\text{Power}=\dot{m}\text{w}_{\text{S}}=180.81 \text{ kW}

4. The temperature rise per stage is ΔT0S=wS/Cp\Delta T_{0\text{S}}=\text{w}_{\text{S}}/Cp = 21 K constant for all stages.

Pressure ratio of stage # 1

π1=(1+ηSΔT0ST01)γ/(γ1)=1.249\pi_1=\left(1+ \eta_{\text{S}}\frac{\Delta T_{0\text{S}}}{T_{01}} \right) ^{\gamma/(\gamma-1)}=1.249

Pressure ratio of stage # 2

π2=(1+ηSΔT0ST01+ΔT0S)γ/(γ1)=1.231\pi_2=\left(1+ \eta_{\text{S}}\frac{\Delta T_{0\text{S}}}{T_{01}+\Delta T_{0\text{S}}} \right) ^{\gamma/(\gamma-1)}=1.231

Pressure ratio of stage # 3

π3=(1+ηSΔT0ST01+2ΔT0S)γ/(γ1)=1.215\pi_3=\left(1+ \eta_{\text{S}}\frac{\Delta T_{0\text{S}}}{T_{01}+2\Delta T_{0\text{S}}} \right) ^{\gamma/(\gamma-1)}=1.215

5. Overall pressure ratio πcomp=π1×π2×π3=1.87\pi_{\text{comp}}= \pi_1\times \pi_2 \times \pi_3=1.87.
6. To calculate the blade height at the exit, the air density must be first calculated. The pressure at the outlet of the compressor is (P03)S3=πC×(P01)S1=1.87 bar(P_{03})_{\text{S}3}= \pi_{\text{C}} \times (P_{01})_{\text{S}1} =1.87 \text{ bar}.
The temperature at the exit of the compressor is (T03)S3=(T01)S1+3ΔT0S=351 K(T_{03})_{\text{S}3}=(T_{01})_{\text{S}1}+3 \Delta T_{0\text{S}}=351 \text{ K}.
With C3=C1C_3=C_1

(T3)S3=(T03)S3C322Cp=343.836 K(P3)S3=(P03)S3[(T03/T3)γ/(γ1)]S3=1.74 barρ3=(P3RT3)S3=1.763 kg/m3(T_3)_{\text{S}3}=(T_{03})_{\text{S}3}-\frac{C_3^2}{2Cp} =343.836 \text{ K} \\ (P_3)_{\text{S}3}=\frac{(P_{03})_{\text{S}3}}{\left[\left(T_{03}/T_3\right)^{\gamma/(\gamma-1)} \right] _{\text{S}3}} =1.74 \text{ bar} \\ \rho_3=\left(\frac{P_3}{RT_3} \right) _{\text{S}3}=1.763 \text{ kg/m}^3

Since m˙=(ρ3C3A3)S3=[ρ3C3(2πrmh3)]S3,\dot{m}=(\rho_3 C_3 A_3)_{\text{S}3}=[\rho_3 C_3 (2\pi r_{\text{m}}h_3)]_{\text{S}3},

(h3)S3=3.2 cm(h_3)_{\text{S}3}=3.2 \text{ cm}

7. The degree of reaction is expressed as

Λ=1Cu1+Cu22U=1Cu22U=11122×188.5=0.7\Lambda =1-\frac{C_{\text{u}1}+C_{\text{u}2}}{2U} \\ =1-\frac{C_{\text{u}2}}{2U} =1-\frac{112}{2 \times 188.5} =0.7

13.15

Related Answered Questions

Question: 13.4

Verified Answer:

The vortex energy equation is expressed by ...