Holooly Plus Logo

Question 12.3: An aircraft engine is fitted with a single-sided centrifugal......

An aircraft engine is fitted with a single-sided centrifugal compressor. The aircraft flies at a Mach number 0.85 and at an altitude of 35,000 ft. The inlet duct of the impeller is fitted with IGV.
The hub and shroud diameters of the eye are 14 and 28 cm, respectively, and the rotational speed is 270 rps. Estimate the prewhirl angle if the mass flow is 3.6 kg/s and the maximum relative inlet Much number is 0.8.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The given data are

d_{\text{eh}}=14 \text{ cm}, \quad d_{\text{et}}=28 \text{ cm}, \quad N=270 \text{ rps}, \quad \dot{m}=3.6 \text{ kg/s}

At altitude 35,000 ft, the ambient conditions are

P_{\text{a}}=23.844 \text{ kPa} \quad T_{\text{a}}=218.67 \text{ K} \\ T_{01}=T_{\text{a}}\left[1+\frac{\gamma-1}{2}M^2_{\text{flight}} \right] \\ T_{01}=218.67\left[1+\frac{0.4}{2}(0.85)^2 \right] =250.67 \text{ K} \\ P_{01}=P_{\text{a}}\left(\frac{T_{01}}{T_{\text{a}}} \right) ^{\gamma/(\gamma-1)}=23,844.24\left(\frac{250.27}{218.67} \right)^{1.4/0.4} =38,243 \text{ Pa} \\ U_{\text{1t}}=\pi D_{\text{t}}\frac{N}{60} \\ U_{\text{1t }}=\pi \times 0.28 \times 270=237.5 \text{ m/s} \\ M_{\text{1t }}=\frac{W_{1_\text{T}}}{\sqrt{\gamma RT_1}} \\ W^2_{\text{1t}} =M^2_{\text{1t}} \gamma RT_1

From Figure 12.22, the velocity triangle at inlet with slip

C_{\text{a1}}^2+(U_{1_{\text{t}}}-C_{\text{a1}}\tan \zeta)^2=M^2_{\text{1t}}\gamma RT_1 \\ (U_{\text{1t}}-C_{\text{a1}} \tan \zeta)^2=M^2_{\text{1t}}\gamma RT_1-C^2_{\text{al}} \\ U_{\text{1t}}-C_{\text{a1}} \tan \zeta=\sqrt{M^2_{\text{1t}}\gamma RT_1-C_{\text{al}}^2} \\ C_{\text{a1}}\tan \zeta=U_{\text{1t}}-\sqrt{M^2_{\text{1t}}\gamma RT_1-C^2_{\text{al}}} \\ \tan \zeta=\frac{U_{1_{\text{t}}}}{C_{\text{a1}}} -\sqrt{\frac{M^2_{\text{1t}}\gamma RT_1}{C^2_{\text{a1}}}-1 } \\ \zeta=\tan^{-1}\left(\frac{U_{1_\text{t}}}{C_{\text{a1}}} -\sqrt{\frac{M^2_{\text{1t}}\gamma RT_1}{C^2_{\text{a1}}} -1}\right) \\ \zeta= \tan^{-1}\left(\frac{237.5}{C_{\text{a1}}} -\sqrt{\frac{(0.8)^2 \times 1.4 \times 287 \ \text{T}_1}{C_{\text{a1}}^2} -1}\right) \\ \zeta=\tan^{-1}\left(\frac{237.5}{C_{\text{a1}}}-\sqrt{\frac{257.15T_1}{C^2_{\text{a1}}} -1} \right) \\ A_1=\frac{\pi}{4} (D_{\text{t}}^2-D^2_{\text{h}})=\frac{\pi}{4} \left[(0.28)^2-(0.14)^2\right] =0.0461814 \text{ m}^2

As a first assumption, calculate the inlet density from the total temperature and pressure, thus

\rho_1=\frac{P_{01}}{RT_{01}} =\frac{38,243}{287 \times 250.27} =0.532428461 \text{ kg/m}^3 \quad \quad \quad \text{(a)}

Now, calculate the axial inlet velocity

C_{\text{a1}}=\frac{\dot{m}}{\rho_1A_1} =\frac{3.5}{0.53242861 \times 0.0461814} =142.344 \text{m/s}

The prewhirl angle is now calculated from the relation

\zeta=\tan^{-1}\left(\frac{237.5}{C_{\text{a1}}}-\sqrt{\frac{257.15T_{01}}{C_{\text{a1}}^2} -1} \right) \\ \zeta=\tan^{-1}\left(\frac{237.5}{142.344}-\sqrt{\frac{257.15 \times 250.27}{(142.344)^2} -1} \right) =10.94^\circ

The inlet absolute velocity is now calculated as

C_1=\frac{C_{\text{a1}}}{\cos \zeta} =\frac{142.244}{\cos 10.94} =144.98 \text{m/s}

The static inlet temperature is

T_1=T_{01}-\frac{C^2_1}{2C_{\text{p}}} =250.27-\frac{(144.98)^2}{2 \times 1005} =239.81 \text{ K}

The static inlet pressure is calculated as

P_1=P_{01}\left(\frac{T_1}{T_{01}} \right) ^{\gamma/(\gamma-1)}=32,840.86\text{ Pa}

The density is recalculated from the static temperature and pressure just obtained as

\rho_1=\frac{P_1}{RT_1} =0.47755 \text{ kg/m}^3 \quad \quad \quad (\text{b})

A large difference is noticed between this value and the value obtained in (a); thus iteration is performed until equal values for the density are obtained in two successive iterations as shown.

Eleven iterations were needed for convergence. Only some were displayed in the above table.
The final results are

C_{\text{a1}} =167.04 \text{m/s}, \quad \zeta=18.94^\circ, \quad C_1=176.6 \text{ m/s} \\ P_1=30,567.8 \text{ Pa}, \quad T_1=234.75 \text{ K}, \quad \rho_1=0.4537 \text{ kg/m}^3

Iteration Number 1 2 10 11
C_{\text{a1}}=\frac{\dot{m}}{\rho_1A_1} 142.344 158.702 167.04 167.04
\zeta=\tan^{-1}\left(\frac{237.5}{C_{\text{a1}}}-\sqrt{\frac{257.15T_1}{C^2_{\text{a1}}}-1 } \right) 13.44 16.375 18.9395 18.94
C_1=\frac{C_{\text{a1}}}{\cos \zeta} 146.35 165.411 176.6 176.6
T_1=T_{01}-\frac{C^2_1}{2C_{\text{P}}} 239.614 236.66 234.754 234.75
P_1=P_{01}\left(\frac{T}{T_{01}} \right) ^{\gamma/(\gamma-1)} 32,840.86 31,444.4 30,567.98 30,567.8
\rho_1=\frac{P_1}{RT_1} 0.47755 0.46295 0.453703 0.4537
12.22

Related Answered Questions