Holooly Plus Logo

Question 12.7: The performance of a conical diffuser is illustrated in Figu......

The performance of a conical diffuser is illustrated in Figure 12.34. The diffuser to be examined has a length-to-throat diameter ratio of 8 and a conical angle (2θ ) equal to 8°. The absolute velocity at impeller outlet, C_2 = 356 m/s, and the impeller outlet diameter is 0.5 m. The rotational speed of impeller N = 290 rps. The number of diffuser conical passages is 12 and the inlet diffuser area per passage is 7.8 \times 10^{-4} \text{ m}^2 . The total temperature and pressure at diffuser inlet are 488 K and 5.48 bar, respectively. Using the approximate static pressure rise, coefficient relation is given by

C_{\text{P}_{\text{r}}}\approx \frac{2(P_{03}-P_{02})}{\rho_{02}C_2^2} +\left[1-\frac{P_{03}}{P_{02}}\left(\frac{C_3}{C_2} \right)^2 \right]

It is required to calculate (a) mass flow rate and (b) outlet velocity C_3 .

12.34
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Figure 12.34, the pressure coefficient and area ratio are

C_{\text{P}_{\text{r}}}\approx 0.52 \quad \text{ and } \quad \text{Area ratio}=4.5

The static temperature and pressure are

T_2=T_{02}-\frac{C_2^2}{2C_{{\text{P}}}} =488-\frac{(356)^2}{2 \times 1005} =424.95 \text{ K} \\ P_2=P_{02}\left(\frac{T_2}{T_{02}} \right) ^{\gamma/(\gamma-1)}=3.376 \text{ bar}

The density is

\rho_2=\frac{P_2}{RT_2} =2.768 \text{ kg/m}^3

The mass flow rate \dot{m} is given by \dot{m} = \rho_2 C_2(A_{\text{d}} \times 12), \text{with }A_{\text{d}}=7.8 \times 10^{-4}\text{ m}^2

\dot{m}=2.768 \times 356 \times 7.8 \times 10^{-4} \times 12=9.223 \text{ kg/s}

An approximate value for C_3 can be evaluated based on the following arguments:
The continuity equation is \dot{m}=\rho_2 C_2A_2=\rho_3 C_3A_3 .
For incompressible flow A_2C_2=A_3C_3 \text{ or }C_3=C_2(A_2/A_3)=C_2/ \text{Area ratio}.
However, since the flow is compressible, the static pressure and consequently the density increase in the diffuser, that is, \rho_3 \gt \rho_2 , thus C_3 \lt C_2/\text{Area ratio}.
Now for our case, the area ratio is 4.5, then C_3 \lt 356/4.5, \text{ or }C_3 \lt 79.1 \text{ m/s}.

\text{Try }C_3=70 \text{ m/s} \\ C_{\text{P}_{\text{r}}}\approx \frac{2(P_{03}-P_{02})}{\rho_{02}C_2^2} +\left[1-\frac{P_{03}}{P_{02}}\left(\frac{C_3}{C_2} \right)^2 \right] \\ C_{\text{P}_{\text{r}}}=\frac{2P_{02}}{\rho_{02}C_2^2} \left[\frac{P_{03}}{P_{02}}-1 \right] +\left[1-\frac{P_{03}}{P_{02}} \left(\frac{C_3}{C_2} \right) ^2 \right] \\ = \frac{2RT_{02}}{C_2^2} \left[\frac{P_{03}}{P_{02}} -1\right] +\left[1-\frac{P_{03}}{P_{02}}\left(\frac{C_3}{C_2} \right)^2 \right]

Define \lambda=P_{03}/P_{02}, then

C_{\text{P}_{\text{r}}}=\frac{2 \times 287 \times 488}{(356)^2} [\lambda-1]+\left[1- \lambda\left(\frac{70}{356} \right)^2 \right]

or

0.52=2.21 (\lambda-1)+(1-0.039 \lambda)=2.171 \lambda-1.21

Thus, λ = 0.796 and P_{03}=4.366 \text{ bar}.

Then, the static properties at the diffuser outlet are

T_3=T_{03}-\frac{C^2_3}{2C_{\text{P}}} =488-\frac{(70)^2}{2 \times 1005} =485.6 \text{ K} \\ P_3=P_{03}\left(\frac{T_3}{T_{03}} \right) ^{\gamma/ \gamma-1}=4.366 \times \left(\frac{485.6}{488} \right) ^{3.5}=4.291 \text{ bar} \\ \rho_3=\frac{P_3}{RT_3} =\frac{4.291 \times 10^5}{287 \times 485.6 } =3.079 \text{ kg/m}^3

The outlet speed is

C_3=\frac{\dot{m}}{\rho_3 A_3} =\frac{9.223}{(4.079 \times 4.5 \times 7.8 \times 10^{-4} \times 12)} =71.1 \text{ m/s}.

Related Answered Questions