Bank Branches and Deposits
A researcher wishes to see if there is a relationship between the number of branches a bank has and the total number of deposits (in billions of dollars) the bank receives. A sample of eight regional banks is selected, and the number of branches and the amount of deposits are shown in the table. At α = 0.05, is there a significant linear correlation between the number of branches and the amount of the deposits?
\begin{array}{|c|c|c|} \hline \text{Bank }& \text{Number of branches} & \text{Deposits (in billions)} \\ \hline A & 209 & \$ 23 \\ B & 353 & 31 \\ C & 19 & 7 \\ D & 201 & 12 \\ E & 344 & 26 \\ F & 132 & 5 \\ G & 401 & 24 \\ H & 126 & 4 \\ \hline \end{array}
Source: SNL Financial.
Step 1 State the hypotheses.
H_{0}: \rho=0 and H_{1}: \rho \neq 0
Step 2 Find the critical value. Use Table L to find the value for n=8 and \alpha=0.05. It is \pm 0.738. See Figure 13-3.
Step 3 Find the test value.
a. Rank each data set as shown in the table.
\begin{array}{|c|cc|rc|} \hline \text{Bank }& \text{Branches }& \text{Rank }& \text{Deposits }& \text{Rank }\\ \hline A & 209 & 5 & 23 & 5 \\ B & 353 & 7 & 31 & 8 \\ C & 19 & 1 & 7 & 3 \\ D & 201 & 4 & 12 & 4 \\ E & 344 & 6 & 26 & 7 \\ F & 132 & 3 & 5 & 2 \\ G & 401 & 8 & 24 & 6 \\ H & 126 & 2 & 4 & 1 \\ \hline \end{array}
Let X_{1} be the rank of the branches and X_{2} be the rank of the deposits. b. Subtract the ranking \left(X_{1}-X_{2}\right).
5-5=0 \quad 7-8=-1 \quad 1-3=-2 \quad \text { etc. }
c. Square the differences.
0^{2}=0 \quad(-1)^{2}=1 \quad(-2)^{2}=4 \quad \text { etc. }
d. Find the sum of the squares.
0+1+4+0+1+1+4+1=12
The results can be summarized in a table as shown.
\begin{array}{|c|c|c|r|} \hline \boldsymbol{X}_{1} & \boldsymbol{X}_{\mathbf{2}} & \boldsymbol{d}=\boldsymbol{X}_{1}-\boldsymbol{X}_{\mathbf{2}} & \boldsymbol{d}^{\mathbf{2}} \\ \hline 5 & 5 & 0 & 0 \\ 7 & 8 & -1 & 1 \\ 1 & 3 & -2 & 4 \\ 4 & 4 & 0 & 0 \\ 6 & 7 & -1 & 1 \\ 3 & 2 & 1 & 1 \\ 8 & 6 & 2 & 4 \\ 2 & 1 & 1 & 1 \\ & & & \Sigma d^{2}=\overline{12} \\ \hline \end{array}
e. Substitute in the formula for r_{s}.
\begin{aligned}& r_{s}=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \quad \text { where } n=\text { number of pairs } \\& r_{s}=1-\frac{6 \cdot 12}{8\left(8^{2}-1\right)}=1-\frac{72}{504}=0.857\end{aligned}
Step 4 Make the decision. Reject the null hypothesis since r_{s}=0.857, which is greater than the critical value of 0.738.
Step 5 Summarize the results. There is enough evidence to say that there is a linear relationship between the number of branches a bank has and the deposits of the bank.
TABLE L Critical Values for the Rank Correlation Coefficient | ||||
Reject H0: 𝜌 = 0 if the absolute value of r_S is greater than the value given in the table. | ||||
n | 𝜶 = 0.10 | 𝜶 = 0.05 | 𝜶 = 0.02 | 𝜶 = 0.01 |
5 | 0.9 | − | − | − |
6 | 0.829 | 0.886 | 0.943 | − |
7 | 0.714 | 0.786 | 0.893 | 0.929 |
8 | 0.643 | 0.738 | 0.833 | 0.881 |
9 | 0.6 | 0.7 | 0.783 | 0.833 |
10 | 0.564 | 0.648 | 0.745 | 0.794 |
11 | 0.536 | 0.618 | 0.709 | 0.818 |
12 | 0.497 | 0.591 | 0.703 | 0.78 |
13 | 0.475 | 0.566 | 0.673 | 0.745 |
14 | 0.457 | 0.545 | 0.646 | 0.716 |
15 | 0.441 | 0.525 | 0.623 | 0.689 |
16 | 0.425 | 0.507 | 0.601 | 0.666 |
17 | 0.412 | 0.49 | 0.582 | 0.645 |
18 | 0.399 | 0.476 | 0.564 | 0.625 |
19 | 0.388 | 0.462 | 0.549 | 0.608 |
20 | 0.377 | 0.45 | 0.534 | 0.591 |
21 | 0.368 | 0.438 | 0.521 | 0.576 |
22 | 0.359 | 0.428 | 0.508 | 0.562 |
23 | 0.351 | 0.418 | 0.496 | 0.549 |
24 | 0.343 | 0.409 | 0.485 | 0.537 |
25 | 0.336 | 0.4 | 0.475 | 0.526 |
26 | 0.329 | 0.392 | 0.465 | 0.515 |
27 | 0.323 | 0.385 | 0.456 | 0.505 |
28 | 0.317 | 0.377 | 0.488 | 0.496 |
29 | 0.311 | 0.37 | 0.44 | 0.487 |
30 | 0.305 | 0.364 | 0.432 | 0.478 |
Source: From N.L. Johnson and F.C. Leone, Statistical and Experimental Design, vol. I (1964), p. 142. Reprinted with permission from the Institute of Mathematical Statistics.