Question 13.7: Bank Branches and Deposits A researcher wishes to see if the......

Bank Branches and Deposits

A researcher wishes to see if there is a relationship between the number of branches a bank has and the total number of deposits (in billions of dollars) the bank receives. A sample of eight regional banks is selected, and the number of branches and the amount of deposits are shown in the table. At α = 0.05, is there a significant linear correlation between the number of branches and the amount of the deposits?

\begin{array}{|c|c|c|} \hline \text{Bank }& \text{Number of branches} & \text{Deposits (in billions)} \\ \hline A & 209 & \$ 23 \\ B & 353 & 31 \\ C & 19 & 7 \\ D & 201 & 12 \\ E & 344 & 26 \\ F & 132 & 5 \\ G & 401 & 24 \\ H & 126 & 4 \\ \hline \end{array}
Source: SNL Financial. 

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1 State the hypotheses.

H_{0}: \rho=0 and H_{1}: \rho \neq 0

Step 2 Find the critical value. Use Table L to find the value for n=8 and \alpha=0.05. It is \pm 0.738. See Figure 13-3.

Step 3 Find the test value.

a. Rank each data set as shown in the table.

\begin{array}{|c|cc|rc|} \hline \text{Bank }& \text{Branches }& \text{Rank }& \text{Deposits }& \text{Rank }\\ \hline A & 209 & 5 & 23 & 5 \\ B & 353 & 7 & 31 & 8 \\ C & 19 & 1 & 7 & 3 \\ D & 201 & 4 & 12 & 4 \\ E & 344 & 6 & 26 & 7 \\ F & 132 & 3 & 5 & 2 \\ G & 401 & 8 & 24 & 6 \\ H & 126 & 2 & 4 & 1 \\ \hline \end{array}

Let X_{1} be the rank of the branches and X_{2} be the rank of the deposits. b. Subtract the ranking \left(X_{1}-X_{2}\right).

5-5=0 \quad 7-8=-1 \quad 1-3=-2 \quad \text { etc. }

c. Square the differences.

0^{2}=0 \quad(-1)^{2}=1 \quad(-2)^{2}=4 \quad \text { etc. }

d. Find the sum of the squares.

0+1+4+0+1+1+4+1=12

The results can be summarized in a table as shown.

\begin{array}{|c|c|c|r|} \hline \boldsymbol{X}_{1} & \boldsymbol{X}_{\mathbf{2}} & \boldsymbol{d}=\boldsymbol{X}_{1}-\boldsymbol{X}_{\mathbf{2}} & \boldsymbol{d}^{\mathbf{2}} \\ \hline 5 & 5 & 0 & 0 \\ 7 & 8 & -1 & 1 \\ 1 & 3 & -2 & 4 \\ 4 & 4 & 0 & 0 \\ 6 & 7 & -1 & 1 \\ 3 & 2 & 1 & 1 \\ 8 & 6 & 2 & 4 \\ 2 & 1 & 1 & 1 \\ & & & \Sigma d^{2}=\overline{12} \\ \hline \end{array}

e. Substitute in the formula for r_{s}.

\begin{aligned}& r_{s}=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \quad \text { where } n=\text { number of pairs } \\& r_{s}=1-\frac{6 \cdot 12}{8\left(8^{2}-1\right)}=1-\frac{72}{504}=0.857\end{aligned}

Step 4 Make the decision. Reject the null hypothesis since r_{s}=0.857, which is greater than the critical value of 0.738.

Step 5 Summarize the results. There is enough evidence to say that there is a linear relationship between the number of branches a bank has and the deposits of the bank.

TABLE  L  Critical Values for the Rank Correlation Coefficient
Reject H0: 𝜌 = 0 if the absolute value of r_S is greater than the value given in the table.
n 𝜶 = 0.10 𝜶 = 0.05 𝜶 = 0.02 𝜶 = 0.01
5 0.9
6 0.829 0.886 0.943
7 0.714 0.786 0.893 0.929
8 0.643 0.738 0.833 0.881
9 0.6 0.7 0.783 0.833
10 0.564 0.648 0.745 0.794
11 0.536 0.618 0.709 0.818
12 0.497 0.591 0.703 0.78
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689
16 0.425 0.507 0.601 0.666
17 0.412 0.49 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.45 0.534 0.591
21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.4 0.475 0.526
26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.488 0.496
29 0.311 0.37 0.44 0.487
30 0.305 0.364 0.432 0.478

Source: From N.L. Johnson and F.C. Leone, Statistical and Experimental Design, vol. I (1964), p. 142. Reprinted with permission from the Institute of Mathematical Statistics.

13.3

Related Answered Questions