Calculate the density, specific weight, and specific volume of chlorine gas at 25^{\circ} \mathrm{C} and pressure of 600 \mathrm{kN} / \mathrm{m}^2 abs (kilonewtons per square meter absolute; see Sec. 2.7). Given the molar mass of chlorine \left(\mathrm{Cl}_2\right)=71.
Sec. 2.7 : R=\frac{R_0}{M}=\frac{8312}{71}=117.1 \mathrm{~N} \cdot \mathrm{m} /(\mathrm{kg} \cdot \mathrm{K})
From Eq. (2.4): \quad \rho=\frac{p}{R T}=\frac{600000 \mathrm{~N} / \mathrm{m}^2}{[117.1 \mathrm{~N} \cdot \mathrm{m} /(\mathrm{kg} \cdot \mathrm{K})][(273+25) \mathrm{K}]}
=17.20 \mathrm{~kg} / \mathrm{m}^3 \quad
With g=9.81 \mathrm{~m} / \mathrm{s}^2, \quad \gamma=\rho g=17.20(9.81)=168.7 \mathrm{~N} / \mathrm{m}^3 \quad
Eq. (2.2): v=\frac{1}{\rho}=\frac{1}{17.20}=0.0581 \mathrm{~m}^3 / \mathrm{kg} \quad
\frac{p}{\rho}=p v=R T (2.4 )
v=\frac{1}{\rho} (2.2 )