Question 15.14: Calculate the pH of: (a) a 0.10 M solution of AlCl3; Ka for ......

Calculate the pH of:

(a) a 0.10 M solution of AlCl3;  Ka for Al(H2O)6 3+ is 1.4×105AlCl_{3};    K_{a}  for  Al(H_{2}O)_{6}  ^{3+}  is  1.4\times 10^{-5}.

(b) a 0.10 M solution of NaCN;    KaK_{a} for HCN is 4.9×10104.9\times 10^{-10}.

STRATEGY

Determine if the salt will be acidic or basic by examining the cations and anions. The pH can be calculated by using the strategy for solving weak acid and base problems outlined in Figure 15.7. Because this problem is similar to others done earlier, we’ll abbreviate the procedure.

Fig 15.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) 

(Steps 1–4. The species present initially are Al(H2O)6 3+Al(H_{2}O)_{6}  ^{3+} (acid), ClCl^{-} (inert), and H2OH_{2}O (acid or base). Because Al(H2O)6 3+Al(H_{2}O)_{6}  ^{3+} is a much stronger acid than water (Ka >> Kw)(K_{a}  >>  K_{w}), the principal reaction is dissociation of Al(H2O)6 3+Al(H_{2}O)_{6}  ^{3+}:

Table 1

Step 5. The value of x is obtained from the equilibrium equation:

Ka=1.4×105=[H3O+][Al(H2O)5(OH)2+][Al(H2O)6 3+]=(x)(x)(0.10 – x)x20.10K_{a}=1.4\times 10^{-5}=\frac{[H_{3}O^{+}][Al(H_{2}O)_{5}(OH)^{2+}]}{[Al(H_{2}O)_{6}  ^{3+}]}=\frac{(x)(x)}{(0.10  –  x)}\approx \frac{x^{2}}{0.10}

 

x = [H3O+]=1.2×103 Mx  =  [H_{3}O^{+}]=1.2\times 10^{-3}  M

Step 6. pH =log (1.2×103)=2.92= – log  (1.2\times 10^{-3}) = 2.92

Thus, Al(H2O)6 3+Al(H_{2}O)_{6}  ^{3+} is a much stronger acid than NH4 +NH_{4}  ^{+}, which agrees with the colors of the indicator in Figure 15.9.

(b)

Step 1. The species present initially are Na+Na^{+} (inert), CNCN^{-} (base), and H2OH_{2}O (acid or base).

Step 2. There are two possible proton-transfer reactions:

CN(aq)+H2O(l)HCN(aq)+OH(aq)    KbCN^{-}(aq)+H_{2}O(l)\xrightleftharpoons{}HCN(aq)+OH^{-}(aq)       K_{b}

 

H2O(l)+H2O(l)H3O+(aq)+OH(aq)    KwH_{2}O(l)+H_{2}O(l)\xrightleftharpoons{}H_{3}O^{+}(aq)+OH^{-}(aq)       K_{w}

Step 3. Kb = Kw/(Ka for HCN)=2.0×105K_{b}  =  K_{w}/(K_{a}  for  HCN) = 2.0\times 10^{-5}. Because Kb >> Kw, CNK_{b}  >>  K_{w},  CN^{-} is a stronger base than H2OH_{2}O and the principal reaction is proton transfer from H2O to CNH_{2}O  to  CN^{-}.

Step 4.

Table 2

Step 5. The value of x is obtained from the equilibrium equation:

Kb=2.0×105=[HCN][OH][CN]=(x)(x)(0.10 – x)x20.10K_{b}=2.0\times 10^{-5}=\frac{[HCN][OH^{-}]}{[CN^{-}]}=\frac{(x)(x)}{(0.10  –  x)}\approx \frac{x^{2}}{0.10}

 

x = [OH]=1.4×103 Mx  =  [OH^{-}]=1.4\times 10^{-3}  M

Steps 6–7. [H3O+]=Kw[OH]=1.0×10141.4×103=7.1×1012[H_{3}O^{+}]=\frac{K_{w}}{[OH^{-}]}=\frac{1.0\times 10^{-14}}{1.4\times 10^{-3}}=7.1\times 10^{-12}

Step 8. pH =log(7.1×1012)=11.15= – log(7.1\times 10^{-12}) = 11.15

The solution is basic, which agrees with the color of the indicator in Figure 15.9.

Table 1

Principal reaction Al(H2O)6 3+(aq)Al(H_{2}O)_{6}  ^{3+}(aq) + H2O(l)H_{2}O(l) \xrightleftharpoons{} H3O+(aq)H_{3}O^{+}(aq) Al(H2O)5(OH)2+(aq)Al(H_{2}O)_{5}(OH)^{2+}(aq)
Equilibrium concentration (M) 0.10 – x x x

Table 2

Principal reaction CN(aq)CN^{-}(aq) + H2O(l)H_{2}O(l) \xrightleftharpoons{} HCN(aq)HCN(aq) OH(aq)OH^{-}(aq)
Equilibrium concentration (M) 0.10 – x x x
Fig 15.9

Related Answered Questions

Question: 15.10

Verified Answer:

Step 1. The species present initially are \...
Question: 15.2

Verified Answer:

The second reactant is HF, and the first product i...
Question: 15.9

Verified Answer:

We can calculate the value of x from the pH: [late...
Question: 15.6

Verified Answer:

[H_{3}O^{+}]=\frac{K_{w}}{[OH^{-}]}=\frac{1...