Holooly Plus Logo

Question 11.8: Design of a Speed Reducer for Wear by the AGMA Method Determ......

Design of a Speed Reducer for Wear by the AGMA Method

Determine the maximum horsepower that the speed reducer gear set in Example 11.7 can transmit, based on wear strength and applying the AGMA method.

Given: Both gears are made of the same 300 Bhn steel of E=30 \times 10^6 psi , \nu=0.3 , and have a face width of b=1.5 \text { in., } P=10 \text { in. }^{-1} \text {, and } N_p=18 \text {. }

Design Decisions: Rational values of the factors are chosen, as indicated in the parentheses in the solution.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Allowable contact stress is estimated from Equation (11.44) as

\sigma_{c, \text { all }}=\frac{S_C C_L C_H}{K_T K_R}         (11.44)

\sigma_{c, \text { all }}=\frac{S_c C_L C_H}{K_T K_R}       (a)

In the preceding,

S_c =127.5 ksi (from Table 11.11, for average strength)

C_L =1.0 (from Figure 11.19, for indefinite life)

C_H=1.0+A\left(\frac{N_g}{N_p}-1.0\right)=1.0    (by Equation 11.46 )

C_H=1.0+A\left(\frac{N_g}{N_p}-1.0\right) \quad\left(\text { for } \frac{H_{B p}}{H_{B g}}<1.70\right)         (11.46)

K_T =1.0 and K_R =1.25 (both from Example 11.7)

Hence,

\sigma_{c, \text { all }}=\frac{127,500(1.0)(1.0)}{(1.0)(1.25)}=102  ksi

The maximum allowable transmitted load is now determined, from Equation (11.42), setting \sigma_{c, \text { all }}=\sigma_c, \text { as }

\sigma_c=C_p\left(F_t K_o K_{ v } \frac{K_s}{b d} \frac{K_m C_f}{I}\right)^{1 / 2}      (11.42)

F_t=\left(\frac{102,000}{C_p}\right)^2 \frac{1.0}{K_o K_{ v }} \frac{b d}{K_s} \frac{I}{K_m C_f}

where

C_p=2300 \sqrt{ psi } (by Table 11.10)

b=1.5 \text { in., } d_p=1.8  in \text {. }

K_{ \upsilon }=1.55, K_o=1.75, K_s=1, K_m=1.6   (all from Example 11.7)

C_f = 1.0 (for smooth surface finish)

I=\frac{\sin \phi \cos \phi}{2 m_N} \frac{m_G}{m_G+1}=0.107       (using Equation 11.43b)

I=\frac{\sin \phi \cos \phi}{2 m_N} \frac{m_G}{m_G+1}          (11.43b)

Therefore,

F_t=\left(\frac{102,000}{2300}\right)^2 \frac{1.0}{(1.75)(1.55)} \frac{1.5(1.8)}{1.0} \frac{0.107}{1.6(1.0)}=131  lb

This value applies to both mating gear tooth surfaces. The corresponding power, using Equation (11.22) with V=754 fpm (from Example 11.7), is

F_t=\frac{33,000 hp }{V}        (11.22)

hp =\frac{F_t V}{33,000}=\frac{131(754)}{33,000}=2.99

TABLE 11.10
AGMA Elastic Coefficients C_p for Spur Gears, in \sqrt{ psi } \text { and }(\sqrt{ MPa })
Gear Material
Pinion Material E , ksi (GPa) Steel Cast Iron Aluminum Bronze Tin Bronze
Steel 30,000 2300 2000 1950 1900
(207) (191) (166) (162) (158)
Cast iron 19,000 2000 1800 1800 1750
(131) (166) (149) (149) (145)
Aluminum bronze 17,500 1950 1800 1750 1700
(121) (162) (149) (145) (141)
Tin bronze 16,000 1900 1750 1700 1650
(110) (158) (145) (141) (137)

 

 

TABLE 11.11
Surface Fatigue Strength or Allowable Contact Stress S_c
S_c
Material Minimum Hardness or Tensile Strength ksi (MPa)
Steel Through hardened 180 Bhn 85-95 (586-655)
240 Bhn 105-115 (724-793)
300 Bhn 120-135 (827-931)
360 Bhn 145-160 (1000-1103)
400 Bhn 155-170 (1069-1172)
Case carburized
55 R_C
180-200 (1241-1379)
60 R_C 200–225 (1379–1551)
Flame or induction hardened 170–190 (1172–1310)
50 R_C
Cast iron
AGMA grade 20 50–60 (345–414)
AGMA grade 30 175 Bhn 65–75 (448–517)
AGMA grade 40 200 Bhn 75–85 (517–586)
Nodular (ductile) iron Annealed 165 Bhn 90%–100% of the S_c Value of steel with the same hardness
Normalized 210 Bhn
OQ&T 255 Bhn
Tin bronze
AGMA 2C (10–12% tin) 40 ksi (276 MPa) 30 (207)
Aluminum bronze ASTM B 148–52 (alloy 9C-HT) 90 ksi (621 MPa 65 (448)
Source: ANSI/AGMA Standard 218.01.
Note: OQ&T, oil-quenched and tempered; HT, heat-treated.
F11.19

Related Answered Questions