Holooly Plus Logo

Question 9.2: Determine the equation of the deflection curve for a cantile......

Determine the equation of the deflection curve for a cantilever beam AB subjected to a uniform load of intensity q (Fig. 9-10a).
Also, determine the angle of rotation θ_B and the deflection δ_B at the free end (Fig. 9-10b). Note: The beam has length L and constant flexural rigidity EI.

9.10
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use a four-step problem-solving approach.
1. Conceptualize: The beam is statically determinate. Begin by finding reaction force R_A and reaction moment M_A. The left hand free-body diagram in Fig. 9-11 is then used to obtain an expression for internal moment M(x).
Bending moment in the beam: The bending moment at distance x from the fixed support is obtained from the free-body diagram of Fig. 9-11. Note that the vertical reaction at the support is equal to qL and the moment reaction is equal to qL^2 / 2.
Consequently,the expression for the bending moment M is
\quad\quad\quad\quad M=-\frac{q{L}^{2}}{2}+q{L}x-\frac{q x^{2}}{2}\quad\quad(9-27)
2. Categorize: Use the expression for internal moment M(x) in the bending moment equation (Eq. 9-14a) to find expressions for slopes and deflections for this beam.
Differential equation of the deflection curve: When the preceding expression for the bending moment is substituted into the differential equation (Eq. 9-16a), the following equation is obtained:

\quad\quad\quad\quad E I{\frac{d^{2}\nu}{d\ x^{2}}}=M\quad\quad(9-14a)

\quad\quad\quad\quad EIv^{\prime\prime}=M\quad\quad(9-16a)

\quad\quad\quad\quad EI\nu^{\prime\prime}=-{\frac{q L^{2}}{2}}+{{q}}{L}x-{\frac{q x^{2}}{2}}\quad\quad(9-28)
3. Analyze: Now integrate both sides of this equation to obtain the slopes and deflections.
Slope of the beam: The first integration of Eq. (9-28) gives the following equation for the slope:
\quad\quad\quad\quad {E}I\nu^{\prime}=-\frac{q{L}^{2}x}{2}+\frac{q{L}x^{2}}{2}-\frac{q x^{3}}{6}+C_{1}\quad\quad(a)
The constant of integration C_1 can be found from the boundary condition that the slope of the beam is zero at the support; which is expressed as
\quad\quad\quad\quad v^\prime(0) = 0
When this condition is applied to Eq. (a), the result is C_1 = 0. Therefore, Eq. (a) becomes
\quad\quad\quad\quad E I{\nu}{'} = -{\frac{q L^{2}x}{2}}+{\frac{q L x^{2}}{2}}-\,{\frac{q x^{3}}{6}}\quad\quad(b)
and the slope is
\quad\quad\quad\quad \nu^{\prime}=-{\frac{q x}{6E I}}(3L^{2}\,-\,3L x+x^{2})\quad\quad(9-29)
As expected, the slope obtained from this equation is zero at the support (x = 0) and negative (i.e., clockwise) throughout the length of the beam.
Deflection of the beam: Integration of the slope equation [Eq. (b)] yields
\quad\quad\quad\quad E I\nu = -{\frac{q L^{2}x^{2}}{4}}+{\frac{q L x^{3}}{6}}-\,{\frac{q x^{4}}{24}}+\,C_{2}\quad\quad(c)
The constant C_2 is found from the boundary condition that the deflection of the beam is zero at the support:
\quad\quad\quad\quad {v\,(0)}= 0
When this condition is applied to Eq. (c), the result is C_2 = 0. Therefore, the equation for the deflection v is
\quad\quad\quad\quad \displaystyle{v\,=-{\frac{q x^{2}}{24E I}}(6L^{2}\,-\,4\,{L}x\,+\,x^{2}\,)}\quad\quad(9-30)
As expected, the deflection obtained from this equation is zero at the support (x = 0) and negative (that is, downward) elsewhere.
Angle of rotation at the free end of the beam: The clockwise angle of rotation θ_B at end B of the beam (Fig. 9-10b) is equal to the negative of the slope at that point. Thus, use Eq. (9-29) to get
\quad\quad\quad\quad \theta_{B}=-{\nu}^{\prime}({L})={\frac{q L^{3}}{6{E}I}}\quad\quad(9-31)
This angle is the maximum angle of rotation for the beam.
Deflection at the free end of the beam: Since the deflection δ_B is downward (Fig. 9-10b), it is equal to the negative of the deflection obtained from Eq. (9-30):
\quad\quad\quad\quad \delta_{B}=-\nu({L})=\frac{q{L}^{4}}{8EI}\quad\quad(9-32)
This deflection is the maximum deflection of the beam.
4. Finalize: Equations (9-29) to (9-32) are listed as Case 1 in Table H-1, Appendix H.

Table H-1
Deflections and Slopes of Cantilever Beams
Notation:
v = deflection in the y direction (positive upward)
v’ = dv/dx = slope of the deflection curve
δ_B = -v(L) = deflection at end B of the beam (positive downward)
θ_B = -v'(L) = angle of rotation at end B of the beam (positive clockwise)
EI = constant
\nu=-{\frac{q x^{2}}{24E I}}(6L^{2}-4L x+x^{2})\quad\quad v' = {\frac{q x}{6E I}}(3L^{2} – 3 L x+x^{2}) \\ δ_B = {\frac{q L^4}{8E I}} \quad \theta_B = {\frac{q L^3}{6E I}}
\displaystyle{v=-\frac{q x^{2}}{24E I}(6a^{2}-4\alpha x+x^{2})}\qquad\qquad(0\leq x\leq a) \\ \displaystyle{v'=-\frac{q x}{6E I}(3a^{2}- 3\alpha x+x^{2})}\qquad\qquad(0\leq x\leq a) \\  \displaystyle{v=-\frac{q a^{3}}{24E I}(4x – a)} \quad\quad  \displaystyle{v'=-\frac{q a^{3}}{6E I}}\qquad(a\leq x\leq L) \\ At \, x= a : v = -\frac{q a^{4}}{8E I} \quad v' = -\frac{q a^{3}}{6E I}\\ \delta_B = {\frac{q a^{3}}{24E I}(4L – a)}\quad \theta_B = \frac{q a^{3}}{6E I}
\displaystyle{v=-\frac{qb x^{2}}{12E I}(6L+3\alpha – 2x)}\qquad\qquad(0\leq x\leq a) \\ \displaystyle{v'= -\frac{qb x}{2E I}(L+ \alpha – x)}\qquad\qquad(0\leq x\leq a) \\  \displaystyle{v=-\frac{q }{24E I}(x^4 -4Lx^3 +6L^2x^2 – 4a^3x + a^4)} \qquad\qquad(a\leq x\leq L) \\ \displaystyle{v'=-\frac{q }{6E I}(x^3 -3Lx^2 + 3L^2x – a^3)} \qquad\qquad(a\leq x\leq L)\\ AT x = a: \, v = -\frac{qa^2b}{12EI}(3L + a) \quad v' = -\frac{qabL}{2EI}\\ \delta_B = {\frac{q }{24E I}(3L^4 -4 a^3L + a^4)}\quad \theta_B = \frac{q }{6E I}(L^3 – a^3)
v = -\frac{Px^2}{6EI}(3L – x) \quad v' = -\frac{Px}{2EI}(2L – x)\\ \delta_B = {\frac{PL^3}{3E I}}\quad \theta_B = \frac{PL^2}{2E I}
\displaystyle{v=-\frac{Px^{2}}{6E I}(3a – x)}\quad \displaystyle{v'=-\frac{Px}{2E I}(2a- x)}\qquad\qquad(0\leq x\leq a) \\  \displaystyle{v=-\frac{Pa^{2}}{6E I}(3x – a)} \quad\quad  \displaystyle{v'=-\frac{Pa^{2}}{2E I}}\qquad(a\leq x\leq L) \\ At \, x= a : v = -\frac{Pa^{3}}{3E I} \quad v' = -\frac{Pa^{2}}{2E I}\\ \delta_B = {\frac{P a^{2}}{6E I}(3L – a)}\quad \theta_B = \frac{P a^{2}}{2E I}
\nu=-\frac{M_{o}x^{2}}{2E I}\quad\quad \nu^{\prime}=-\frac{M_{o}x}{E I} \\ \delta_B=-\frac{M_{o}L^{2}}{2E I}\quad\quad \theta_{B}=-\frac{M_{o}L}{E I}
\displaystyle{v=-\frac{M_o x^{2}}{2E I}}\qquad \displaystyle{v'=-\frac{M_o x}{E I}}\qquad(0\leq x\leq a) \\ \displaystyle{v=-\frac{M_o a}{2E I}}(2x – a) \quad \displaystyle{v'=-\frac{M_o a}{E I}}\qquad(0\leq x\leq a)  \\ At \, x= a : \displaystyle{v=-\frac{M_o a^{2}}{2E I}}\qquad \displaystyle{v'=-\frac{M_o a}{E I}}\\ \delta_B = {\frac{M_o a}{2E I}(2L – a)}\quad \theta_B = \frac{M_o a}{E I}
\displaystyle{v=-\frac{q_o x^{2}}{120LE I}(10L^{3} – 10L^2 x + 5Lx^{2} – x^3)} \\ \displaystyle{v'=-\frac{q_o x}{24LE I}(4L^{3}- 6L^2 x + 4Lx^{2} – x^3)} \\  \delta_B = {\frac{q_o L^{4}}{30E I}}\quad \theta_B = \frac{q_o L^{3}}{24E I}
\displaystyle{v=-\frac{q_o x^{2}}{120LE I}(20L^{3} – 10L^2 x +  x^3)} \\ \displaystyle{v'=-\frac{q_o x}{24LE I}(8L^{3}- 6L^2 x + x^3)} \\  \delta_B = {\frac{11q_o L^{4}}{120E I}}\quad \theta_B = \frac{q_o L^{3}}{8E I}
\displaystyle{v=-\frac{q_o L}{3\pi ^4E I}(48L^{3}\cos {\frac{\pi x}{2L}} – 48L^3 + 3\pi ^3Lx^2 – \pi^3x^3)} \\ \displaystyle{v'=-\frac{q_o L}{\pi ^3E I}( 2\pi ^2Lx – \pi^2x^2 – 8L^{2}\sin {\frac{\pi x}{2L}})} \\  \delta_B = {\frac{2q_o L^{4}}{3\pi^4E I}}(\pi^3 – 24)\quad \theta_B = \frac{q_o L^{3}}{\pi^3E I}(\pi^2 – 8)
9.10
9.11

Related Answered Questions