Holooly Plus Logo

Question 17.1: Determine the Fourier series of the waveform shown in Fig. 1......

Determine the Fourier series of the waveform shown in Fig. 17.1. Obtain the amplitude and phase spectra

تعليق توضيحي 2023-03-01 190753
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The Fourier series is given by Eq. (17.3), namely,

f(t) = \underbrace{a_0}_{dc} + \underbrace{\sum\limits_{n=1}^{\infty }{(a_n \ cos \ n\omega_0 t + b_n sin \ n \omega_0 \ t)} }_{ac} \quad (17.3)

f(t) = a_{0} + \sum\limits_{n= 1}^{∞}{(a_{n}  \cos nω_{0} t  + b_{n} \sin nω_{0} t)} (17.1.1)

Our goal is to obtain the Fourier coefficients  a_{0} , a_{n}   and  b_{n}   using Eqs. (17.6), (17.8), and (17.9). First, we describe the waveform as

a_0 = \frac{1}{T}\int_{0}^{T}{f(t)dt} \quad (17.6) \\ a_n = \frac{2}{T}\int_{0}^{T}{f(t) cos \ n \omega_0 t \ dt} \quad (17.8) \\ b_n = \frac{2}{T}\int_{0}^{T}{f(t) sin \ n \omega_0 t \ dt} \quad (17.9)\\

f(t) = \begin{cases} 1 , & 0 < t < 1 \\ 0 , & 1 < t < 2 \end{cases}              (17.1.2)

and f(t) =  f(t  +  T) . Since   T =  2, ω_{0}  =  2π/T  = π   Thus,

a_{o} = \frac{1}{T} \int^{T}_{0}{f(t) dt} = \frac{1}{2} [\int^{1}_{0}{1 dt} + \int^{2}_{1}{0 dt} ] = \frac{1}{2} t \mid^{1}_{0} = \frac{1}{2}             (17.1.3)

Using Eq. (17.8) along with Eq. (17.15a),

a_{n}  =  \frac{2}{T} \int^{T}_{0}{f(t) \cos nω_{0} t dt}

= \frac{2}{2} [ \int^{1}_{0}{1 \cos  nπt  dt  } + \int^{2}_{1}{0 \cos nπt dt}                         (17.1.4)

= \frac{1}{nπ} \sin nπt  \mid^{1}_{0} = \frac{1}{nπ} [ \sin nπ  –  \sin (0) ] = 0

From Eq. (17.9) with the aid of Eq. (17.15b),

\int{cos \ at \ dt = \frac{1}{a} sin\ at }\quad (17.15a) \\\int{sin \ at \ dt = -\frac{1}{a} cos\ at }\quad (17.15b)\\ b_{n}  =  \frac{2}{T} \int^{T}_{0}{f(t) \sin nω_{0} t dt}

= \frac{2}{2}  [\int^{1}_{0}{1 \sin  nπt  dt  } + \int^{2}_{1}{0 \sin nπt dt}]                         (17.1.5)

= – \frac{1}{nπ} \cos  nπt  \mid^{1}_{0} =- \frac{1}{nπ} (\cos nπ  –  1 ] ,        \cos n π = (-1)^{n} = \frac{1}{nπ} [ 1  –  (-1)^{n} ] = \begin{cases} \frac{2}{nπ} ,  &  n = odd \\ 0 , &  n = even \end{cases}

Substituting the Fourier coefficients in Eqs. (17.1.3) to (17.1.5) into Eq. (17.1.1) gives the Fourier series as

f(t) =  \frac{1}{2}  + \frac{2}{π} \sin πt  + \frac{2}{3π} sin 3πt  + \frac{2}{5π} sin 5πt + . . .                  (17.1.6)

Since f(t) contains only the dc component and the sine terms with the fundamental component and odd harmonics, it may be written as

f(t) = \frac{1}{2} + \frac{2}{π} \sum\limits^{∞}_{k = 1}{\frac{1}{n} \sin 5 πt} ,     n = 2k – 1 (17.1.7)

By summing the terms one by one as demonstrated in Fig. 17.2, we notice how superposition of the terms can evolve into the original square. As more and more Fourier components are added, the sum gets closer and closer to the square wave. However, it is not possible in practice to sum the series in Eq. (17.1.6) or (17.1.7) to infinity. Only a partial sum ( n = 1, 2,3 , … , N , where N is finite) is possible. If we plot the partial sum (or truncated series) over one period for a large N

as in Fig. 17.3, we notice that the partial sum oscillates above and below the actual value of f(t). At the neighborhood of the points of discontinuity (x= 0, 1, 2, … ), there is overshoot and damped oscillation. In fact, an overshoot of about 9 percent of the peak value is always present, regardless of the number of terms used to approximate f(t). This is called the Gibbs phenomenon.

Finally, let us obtain the amplitude and phase spectra for the signal in Fig. 17.1. Since a_{n} = 0

A _{n} = \sqrt{a^{2}_{n} + b^{2}_{n}} = |b_{n}| = \begin{cases} \frac{2}{nπ} , n = odd \\ 0 , n = even \end{cases} (17.1.8)

and

\phi_n = -tan^{-1} \frac{b_n}{a_n} = \begin{cases} -90 , \quad n = odd \\ 0 , \quad n = even \end{cases} \quad (17.1.9)

and (17.1.9) The plots of A_n  and  \phi_n for different values of n \omega_0 = n \pi provide the amplitude and phase spectra in Fig. 17.4. Notice that the amplitudes of the harmonics decay very fast with frequency.

تعليق توضيحي 2023-03-25 124039
تعليق توضيحي 2023-03-25 124136
تعليق توضيحي 2023-03-25 124219

Related Answered Questions

Question: 17.2

Verified Answer:

The function is described as f(t) = \begin...
Question: 17.3

Verified Answer:

The function f(t)  is an odd function. Hence [late...
Question: 17.5

Verified Answer:

The function in Fig. 17.17 is half-wave odd symmet...
Question: 17.12

Verified Answer:

Figure 17.36 shows the schematic for obtaining the...
Question: 17.13

Verified Answer:

1. Define. Although the problem appears to be clea...
Question: 17.10

Verified Answer:

Since    T = 2 π , ω_{o} = 2 π /T = 1 . [/l...
Question: 17.11

Verified Answer:

From Fig. 17.9,f(t)  =  t,  0 <  t  <  1 ,  ...