Holooly Plus Logo

Question 17.2: Obtain the Fourier series for the periodic function in Fig. ......

Obtain the Fourier series for the periodic function in Fig. 17.7 and plot the amplitude and phase spectra.

تعليق توضيحي 2023-03-02 171925
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The function is described as

f(t) = \begin{cases} t ,  &  0  <  t  <  1  \\ 0,   &  1 <  t  <  2 \end{cases}

Since T = 2 , ω_{0}  = 2 π / T = π .   Then

a_{0} = \frac{1}{T} \int^{T}_{0}{f(t)  dt} = \frac{1}{2} [ \int^{1}_{0}{t  dt}  +  \int^{2}_{1}{0  dt} ] = \frac{1}{2} \frac{t^{2}}{2} \mid^{1}_{0} = \frac{1}{4}                      (17.2.1)

To evaluate a_{n}   and  b_{n} ,  we need the integrals in Eq. (17.15):

\int{\cos  at  dt} = \frac{1}{a} \sin at                    (17.15a)

\int{\sin   at  dt} = – \frac{1}{a} \cos at                    (17.15b)

\int{t  \cos  at  dt } =  \frac{1}{a^{2}} \cos  at  +  \frac{1}{a}  t \sin  at                              (17.15c)

\int{t  \sin  at  dt} = \frac{1}{a^{2}} \sin  at  –  \frac{1}{a} t  \cos  at                              (17.15d)

a_{n} = \frac{2}{T} \int^{T}_{0}{f(t)  \cos nω_{0} t  dt }

= \frac{2}{2} [ \int^{1}_{0}{t  \cos n π t dt }  +  \int^{2}_{1}{0  \cos n π t dt } ]                           (17.2.2)

= [ \frac{1}{n^{2} π^{2}} \cos n π t + \frac{t}{n π } n π t ] \mid^{1}_{0}

= \frac{1}{n^{2} π^{2}} (\cos n π   –  1)  +  0  =  \frac{(-1)^{n}  –  1}{n^{2} π^{2}}

since  \cos nπ = (-1)^{n} ;   and

b_{n}  =  \frac{2}{T} \int^{T}_{0}{f(t)  \sin  n ω_{0} t  dt}

= \frac{2}{2} [ \int^{1}_{0}{t  \sin  nπt dt } + \int^{2}_{1}{0  \sin  nπt dt }                           (17.2.3)

= [\frac{1}{n^{2}π^{2}}  \sin n πt – \frac{t}{n π} \cos n πt] \mid^{1}_{0}

= 0  –  \frac{\cos nπ }{n π} = \frac{(-1)^{n + 1}}{n π}

Substituting the Fourier coefficients just found into Eq. (17.3) yields

\boxed{f(t)=\underbrace{a_0}_{dc}+\underbrace{\sum_{n=1}^{\infty}\left(a_{n}\cos n\omega_{0}t+b_{n}\sin n\omega_{0}t\right)}_{ac}}(17.3)

f(t)=\frac{1}{4}+\sum_{n=1}^{\infty}\left[\frac{\left[(-1)^{n}-1\right]}{(n\pi)^{2}}\mathrm{cos}\,n\,\pi t+\frac{(-1)^{n+1}}{n\pi}\mathrm{sin}\,n\pi t\right]

To obtain the amplitude and phase spectra, we notice that, for even harmonics, a_n=0,b_n=-1/n\pi, so that

A_{n}/\underline{\phi_{n}}=a_n -j b_n=0+j\frac{1}{n\pi}          (17.2.4)

Hence,

\begin{array}{ll}A_{n}=|b_{n}|={\frac{1}{n\pi}},\qquad n=2,4,\ldots.&(17.2.5)\\\phi_{n}=90^{\circ},\qquad n=2,4,\ldots.\end{array}

For odd harmonics, a_{n}= -2/(n^{2}\pi^{2}),b_{n}=1/(n\pi) so that

A_{n}/\underline{\phi_{n}}=a_{n}-j b_{n}=-\frac{2}{n^{2}\pi^{2}}-j\frac{1}{n\pi}\qquad\qquad(17.2.6)

That is,

\begin{array}{l l}{{{ A}_{n}=\,\sqrt{a_{n}^{2}+b_{n}^{2}}=\sqrt{\frac{4}{n^{4}\pi^{4}}+\frac{1}{n^{2}\pi^{2}}}~~~~~}}&{{~~~~(17.2.7)}}\\ {{}}&{{}}&{{}}\\ {{=\frac{1}{n^{2}\pi^{2}}~\sqrt{4+n^{2}\pi^{2}}~~~~~n=1,3,\dots.}}\end{array}

From Eq. (17.2.6), we observe that lies in the third quadrant, so that

\phi_{n}=180^{\circ}+\tan^{-1}{\frac{n\pi}{2}},\qquad n=1,3,\cdot\cdot\cdot     (17.2.8)
From Eqs. (17.2.5), (17.2.7), and (17.2.8), we plot A_n and \phi_n for different values of n\omega_0=n\pi to obtain the amplitude spectrum and phase spectrum as shown in Fig. 17.8.

fig17.8

Related Answered Questions

Question: 17.1

Verified Answer:

The Fourier series is given by Eq. (17.3), namely,...
Question: 17.3

Verified Answer:

The function f(t)  is an odd function. Hence [late...
Question: 17.5

Verified Answer:

The function in Fig. 17.17 is half-wave odd symmet...
Question: 17.12

Verified Answer:

Figure 17.36 shows the schematic for obtaining the...
Question: 17.13

Verified Answer:

1. Define. Although the problem appears to be clea...
Question: 17.10

Verified Answer:

Since    T = 2 π , ω_{o} = 2 π /T = 1 . [/l...
Question: 17.11

Verified Answer:

From Fig. 17.9,f(t)  =  t,  0 <  t  <  1 ,  ...