Dorf Motors, a vehicle manufacturer, is interested in performing a fastener integrity reliability study of their vehicles. Dorf Motors retains a consultant to compare their fastener recall data against Fota Motors fastener recall data as presented in the NHTSA website. Eight Dorf and five Fota vehicle platforms were chosen from 20 years of NHTSA recall data for analysis. A review of the data indicates that the eight Dorf vehicle types averaged 7 recalls per year with a standard deviation of 1.5 recalls per year and the five Fota vehicle platforms averaged 4 recalls per year with a standard deviation of 0.75 recalls per year.
The consultant assumes that the recalls per year for each vehicle type are approximately normally distributed with equal variances. He intends to construct a 90% confidence interval for the difference between the average recall per year for these two manufacturers’ vehicle types. He then sets forth his analysis as shown:
1. n_{1} = 8 = n_{D} n_{2} = 5 = n_{F} (small sample—use t distribution)
2. \overline{x}_{1} = 7 \overline{x}_{2} = 4\sigma_{1} = \sigma_{2} \longrightarrow but unknown
3. S_{1} = 1.5 S_{2} = 0.75
4. = 0.1
5. ∂ = n_{1} + n_{2} − 2 8 + 5 − 2 = 11
Therefore, the average vehicle recall difference for the vehicle samples from the two manufacturers at a 90% confidence level will statistically range from 1.691 to 4.309.
TABLE 4.3 | ||||||||
Percentile Values for Student’s t Distribution [5] | ||||||||
![]() |
||||||||
1 | 0.325 | 0.727 | 1.376 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
2 | 0.289 | 0.617 | 1.061 | 1.886 | 2.92 | 4.303 | 6.965 | 9.925 |
3 | 0.277 | 0.584 | 0.978 | 1.648 | 2.353 | 3.182 | 4.541 | 5.841 |
4 | 0.271 | 0.569 | 0.941 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 |
5 | 0.267 | 0.559 | 0.920 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 |
6 | 0.265 | 0.553 | 0.906 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 |
7 | 0.263 | 0.549 | 0.896 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 |
8 | 0.262 | 0.546 | 0.889 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 |
9 | 0.261 | 0.543 | 0.883 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 |
10 | 0.260 | 0.542 | 0.879 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 |
11 | 0.260 | 0.540 | 0.876 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 |
12 | 0.259 | 0.539 | 0.873 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 |
13 | 0.259 | 0.538 | 0.870 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 |
14 | 0.258 | 0.537 | 0.868 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 |
15 | 0.258 | 0.536 | 0.866 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 |
16 | 0.258 | 0.535 | 0.865 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 |
17 | 0.257 | 0.534 | 0.863 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 |
18 | 0.257 | 0.534 | 0.862 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 |
19 | 0.257 | 0.533 | 0.861 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 |
20 | 0.257 | 0.533 | 0.860 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 |
21 | 0.257 | 0.532 | 0.859 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 |
22 | 0.256 | 0.532 | 0.858 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 |
23 | 0.256 | 0.532 | 0.858 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 |
24 | 0.256 | 0.531 | 0.857 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 |
25 | 0.256 | 0.531 | 0.856 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 |
26 | 0.256 | 0.531 | 0.856 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 |
27 | 0.256 | 0.531 | 0.855 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 |
28 | 0.256 | 0.530 | 0.855 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 |
29 | 0.256 | 0.530 | 0.854 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 |
30 | 0.256 | 0.530 | 0.854 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 |
40 | 0.255 | 0.529 | 0.851 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 |
60 | 0.254 | 0.527 | 0.848 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 |
120 | 0.254 | 0.526 | 0.845 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 |
∞ | 0.253 | 0.524 | 0.842 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 |