Holooly Plus Logo

Question 24.5: Finding the Number of Radioactive Nuclei Problem Strontium-9......

Finding the Number of Radioactive Nuclei

Problem Strontium-90 is a radioactive byproduct of nuclear reactors that behaves biologically like calcium, the element above it in Group 2A(2). When ^{90}Sr is ingested by mammals, it is found in their milk and eventually in the bones of those drinking the milk. If a sample of ^{90}Sr has an activity of 1.2×10^{12} d/s, what are the activity and the fraction of nuclei that have decayed after 59 yr (t_{1/2} of ^{90}Sr  =  29  yr)?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan The fraction of nuclei that have decayed is the change in number of nuclei, expressed as a fraction of the starting number. The activity of the sample (𝒜) is proportional to the number of nuclei (𝒩), so we know that

            \text{Fraction decayed }=  \frac{𝒩_0  −  𝒩_t}{𝒩_0}  =  \frac{𝒜_0  −  𝒜_t}{𝒜_0}

We are given 𝒜_0  (1.2×10^{12}  d/s), so we find 𝒜_t from the integrated form of the first-order rate equation (Equation 24.3), in which t is 59 yr. To solve that equation, we first need k, which we can calculate from the given t_{1/2} (29 yr) using Equation 24.4.

           \ln  \frac{𝒩_t}{𝒩_0}  =  −kt\text{        or       } 𝒩_t  =  𝒩_0e^{−kt} \text{        and       }\ln  \frac{𝒩_0}{𝒩_t}  =  kt        (24.3)

           \ln  \frac{𝒩_0}{\frac{1}{2}𝒩_0}  =  kt_{1/2}\text{      so       } t_{1/2}  =  \frac{\ln  2}{k}        (24.4)

Solution Calculating the decay constant k:

           t_{1/2}  =  \frac{\ln  2}{k}\text{     so      }k  =  \frac{\ln  2}{t_{1/2}}  =  \frac{0.693}{29  yr}  =  0.024  yr^{−1}
Applying Equation 24.3 to calculate 𝒜_t, the activity remaining at time t:
           \ln  \frac{𝒩_0}{𝒩_t}  =  \ln  \frac{𝒜_0}{𝒜_t}  =  kt \text{      or        }\ln  𝒜_0  −  \ln  𝒜_t  =  kt
So,             \ln  𝒜_t  =  −kt  +  \ln  𝒜_0  =  −(0.024  yr^{−1}  ×  59  yr)  +  \ln  (1.2×10^{12}  d/s)
           \ln  𝒜_t  =  −1.4  +  27.81  =  26.4
           𝒜_t  =  2.9×10^{11}  d/s
(All the data contain two significant figures, so we retained two in the answer.) Calculating the fraction decayed:

           \text{Fraction decayed =}  \frac{𝒜_0  −  𝒜_t}{𝒜_0}  =  \frac{1.2×10^{12}  d/s  −  2.9×10^{11}  d/s}{1.2×10^{12}  d/s}  =  0.76
Check The answer is reasonable: t is about 2 half-lives, so 𝒜_t should be about \frac{1}{4}𝒜_0, or about 0.3×10^{12}; therefore, the activity should have decreased by about \frac{3}{4}.

Comment 1. A substitution in Equation 24.3 is useful for finding 𝒜_t, the activity at time t: 𝒜_t   = 𝒜_0e^{−kt}.
2. Another way to find the fraction of activity (or nuclei) remaining uses the number of half-lives (t/t_{1/2}). By combining Equations 24.3 and 24.4 and substituting (\ln  2)/t_{1/2} for k, we obtain

          \ln  \frac{𝒩_0}{𝒩_t}  =  \left( \frac{\ln  2}{t_{1/2}} \right) t  =  \frac{t}{t_{1/2}} \ln  2  =  \ln  2^{\frac{t}{t_{1/2}}}

Inverting the ratio gives

         \ln  \frac{𝒩_t}{𝒩_0}  =  \ln \left( \frac{1}{2}\right)^{\frac{t}{t_{1/2}}}
Taking the antilog gives

         \text{Fraction remaining = }\frac{𝒩_t}{𝒩_0}  =  \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}}  =  \left( \frac{1}{2}\right)^{\frac{59}{29}}  =  0.24
So,              \text{Fraction decayed = 1.00 − 0.24 = 0.76}

Related Answered Questions